动态列表

  • Stability AI前CEO惊人预测:人类智力价值归零,只剩1000天!
  • 刚刚,奥特曼预言:人类「只剩」最后5年!
  • 免训练加速61倍!陈怡然团队新作DPad:仅关注「彩票token」
  • 估值840亿AI实验室再放大招,他们要给大模型戴上「紧箍咒」
  • 苹果掀桌!扔掉AlphaFold核心模块,开启蛋白折叠「生成式AI」时代
  • 自动驾驶进入大模型时代,主机厂寻找「联合创始人」
  • 复旦等揭秘机器人“大脑”安全漏洞:一张图就能让它“宕机”,攻击成功率76.2%
  • DASFAA 2025 | 湖大等提出SCRA-VQA:给LLM一份“精装修”的图像描述,无需训练提升VQA性能
  • 苹果官方旗舰店也放假,商品不发货;腾讯推「老年打车」服务;车主酒驾,智能驾驶「报警」|极客早知道
  • 刚刚,ChatGPT Pulse上线!私人秘书不再是富人特权
  • 颠覆算力格局!全球首个星座级太空AI算力服务,在中国诞生
  • OpenAI 3万亿美元测试,AI首战44个行业人类专家!
  • JHU教授揭秘学术潜规则:普通博士如何打破鄙视链翻盘?
  • Hinton预言错了!年薪狂飙52万美元,AI没有「干掉」放射科医生
  • 168 元一年的「小红卡」,是小红书打破本地生活红海的钥匙
  • 当 5 亿玩家涌入 AI 的 3D 新世界
  • 博士申请 | 香港中文大学(深圳)冀晓强老师课题组招收人工智能全奖博士/硕士
  • 128k死穴被击穿!Amazon爆改长上下文:段内压缩快4×,推理不掉点还更准
  • 普林斯顿陈丹琦组新作:RLHF难支撑,RLVR有边界?RLMT开辟第三条路
  • AI 到底会不会做生意?1688 的答案让人惊喜
  • 找人不求人?Lessie 让「人脉玄学」变成算法游戏|AI 上新
  • 浙大发布RS3DBench:让遥感AI看懂3D世界,首个像素级对齐的大规模基准来了!
  • 斯坦福推出VisualMimic:让机器人“眼观六路”,零样本完成复杂任务
  • 小米 17 系列发布,4499 起;追觅「库里南」图片曝光;YU7 Max 成「百万最速」车
  • 刚刚,LeCun团队开源首款代码世界模型!能像程序员一样思考的LLM来了
  • AI正在偷走白领工作!OpenAI狂砸10亿教AI上班,你的完美继任者即将上岗
  • Sora 2瑟瑟发抖!通义万相2.5放大招:一句话出1080P电影,音画精准同步
  • 信息熵之后,清华提出状态熵!量化分析「系统智能性」的全新视角
  • 突发!Meta刚从OpenAI挖走了清华校友宋飏
  • KV缓存不再爆!清华姚期智团队重写注意力维度,长上下文更省更强 | NeurIPS 2025 Spotlight
  • 78条打穿1万条!上交大新范式告诉你:智能体训练靠“质”,不是靠“量”
  • 北京内推 | 中科院软件所数据科学研究中心招聘大语言模型算法实习生
  • 三款骁龙芯片曝光,高通谷歌联手打造「安卓 PC」时代
  • Instagram 月活破 30 亿,靠“短视频”和“私信”;2027款iPhone曝光;女子用ChatGPT选号中百万大奖,全部捐出
  • 一年4次迭代,狂堆GPU成真!微软AI冷液灌芯,散热暴涨3倍
  • 刚刚,阿里CEO吴泳铭发布「ASI宣言」:超级智能才是终局!
  • 前Meta工程师爆料:17人团队15个H-1B!一夜之间80%对手没了?
  • 秘塔AI放大招!「边想边搜边做」,内置20+智能体,想法一键实现
  • 震撼!AI物理「双修」:亥姆霍兹方程嵌进生成器,伪影当场消失
  • OCRBench v2 25年9月最新榜单发布!揭示多模态大模型文档智能真实水平
  • 恶劣天气下的图像修复:南理工等提出LCDiff,让AI在雨雪雾天也能看得清
  • RL不再撒胡椒面!港科大 × 清华新作:只盯“规划token”,大模型推理力狂飙
  • NeurIPS 2025 | 甩掉文本CoT!FSDrive开启时空思维链,自动驾驶迈入视觉推理时代
  • 博士申请 | 加拿大麦吉尔大学智能自动化实验室招收大模型/强化学习方向全奖博士生
  • 3 天卖完今年所有产能,蔚来全新 ES8 如何实现逆风翻盘?
  • 超越 AGI,阿里剑指「超级智能」
  • ContextFlow:无需训练的视频编辑新范式,实现电影级魔改!
  • 字节跳动OmniInsert炸场:无需掩码,任意物体“贴”进视频,效果碾压闭源SOTA!
  • Point-SSM:一种用于点云分析的极简状态空间模型,在医学点云任务上表现SOTA
  • 忘了法拉利,一辆中国车正在改写游戏规则
  • 40亿投进去,换回了什么?全新问界M7的「值得」哲学
  • 华为问界新 M7,1 小时大定 3 万;李想:iPhone 17 顶配太丑,不买;防台风,腾讯「捆绑」QQ 企鹅塑像
  • 一半人明天不上班,GDP不会掉一点!耶鲁大学揭AGI残酷真相
  • 告别胶水代码,5倍飚速!无问芯穹首次揭秘,Infra智能体蜂群登场
  • Depth Anything再出新作!浙大 & 港大出品:零样本,优化任意深度图
  • H-1B「天价签证」引爆恐慌!印裔精英返乡梦碎,2800亿市场剧震
  • 突发:甲骨文CEO下台!刚和OpenAI签下3000亿美元大单,或因路线斗争
  • 年轻一代创作者,学会与 AI 共舞
  • 北京内推 | Apple中国招聘机器学习/AI方向研究型实习生
  • 一套框架搞定图像定制!IC-Custom统一「位置相关/无关」,万物迁移真落地
  • KDD 2025 | 从个股偏离到市场共振:UMI挖出股市非理性因子,显著提升预测精度
  • MiniCPM-V 4.5技术报告正式出炉!首个高刷视频理解多模态模型全解析
  • SilentStriker:无声击溃大模型
  • TPAMI | 数据增强还在“盲操”?南大提出IPF-RDA,让模型训练告别信息丢失
  • Yann LeCun团队新作LLM-JEPA:结合联合嵌入预测架构,显著提升大模型微调性能与效率,在代码生成任务上表现卓越
  • 小米 17 系列手机官宣 9 月 25 日发布;iPhone 17 标准款需求超预期,苹果已增产;罗永浩再回应债务问题:个人债务五年前就还完了,后面是主动还的公司债务|极客早知道
  • 比思维链准43%!逻辑脑+大模型直觉,推理可靠性大幅提升
  • 陶哲轩官宣AI数学基金首轮名单:29个项目瓜分1.3亿,数学界沸腾!
  • GPT-5仅23.3%,全球AI集体挂科!地狱级编程考试,夺金神话破灭
  • 一手奶瓶一手键盘!新手宝妈产假氛围编程,自研实用家庭App
  • 刚刚,DeepSeek-V3.1「终极版」重磅发布!最大提升超36%,V4/R2还远吗?
  • 为了千元机用户的「流畅权」,OPPO 为安卓换了个「引擎」
  • ​一年卖出 10 个亿,这是年轻人真正的「户外神器」
  • Teable 宣布完成数百万美元天使轮融资,让数据库「长出耳朵和手」
  • 博士申请 | 复旦大学魏龙老师课题组招收AI4Science方向博士/硕士/RA/实习生
  • 北京内推 | 智源研究院多模态交互研究中心招聘多模态/具身智能方向研究型实习生
  • RLHF要下岗?Meta × 牛津搞出新套路:用算力教算力,大模型训练新范式来了!
  • Lumos-1登场!自回归 + 离散扩散合体:让大模型真正“构造”动态世界!
  • 不到两千块,我拍到了专业级别的月全食|New Things
  • 博后年薪40万到90万 | 东方理工朱文韬课题组招聘AI方向博士后、研究助理教授、访问学生、实习生
  • 字节跳动SAIL-VL2登顶OpenCompass,开源高效多模态新标杆
  • 苹果发布Manzano:一种简单可扩展的统一多模态大模型,其混合视觉Tokenizer统一了理解与生成任务,性能SOTA
  • 黄仁勋出手,50 亿美元入股英特尔,英伟达一统「GPU+x86」生态
  • 巴菲特清仓比亚迪,期间股价上涨 38 倍;苹果折叠屏手机细节曝光;雷军年度演讲定档 9 月 25 日
  • 刚刚,Gemini「灵魂人物」官宣加盟xAI!马斯克火速转推背书
  • 靠10万+粉丝,北漂插画师秒贷款!华为全栈AI加速,让银行及时看见
  • 醒醒,LLM根本没有性格!加州理工华人揭开AI人格幻觉真相
  • 哈佛大佬都哭了!H-1B签证飙至10万刀,微软谷歌连夜召回全球员工
  • 马斯克xAI百天血战,100天狂招100人!联创实权被削,豪言干掉微软
  • 全球双榜SOTA!明略科技专有大模型 Mano开启GUI智能操作新时代
  • 谷歌Gemini IMO和ICPC夺金功臣之一被xAI挖走,马斯克直呼:起飞
  • 工业级3D世界构建提速90倍!全新框架LatticeWorld让虚拟世界「一句话成真」
  • 集合通信库VCCL释放GPU极致算力,创智、基流、智谱、联通、北航、清华、东南重磅开源
  • 【招生招聘】阿卜杜拉国王科技大学孟彦达博士组全奖博士、博后、实习、交流生
  • 告别视频“抽帧”理解,美国东北大学新算法GRT算法实现高效可扩展的高帧率密集视频理解
  • iPhone17 卖爆,官网发货延至双 11;比亚迪仰望 U9 赛道版开启预定;网友玩坏 iPhone「舌头刷抖音」

免费用!阿里通义大模型上新,超逼真音视频生成SOTA!

近日,阿里通义实验室推出了全新数字人视频生成大模型 OmniTalker,只需上传一段参考视频,不仅能学会视频中人物的表情和声音,还能模仿说话风格。相比传统的数字人生产流程,该方法能够有效降低制作成本,提高生成内容的真实感和互动体验,满足更广泛的应用需求。目前该项目已在魔搭社区、HuggingFace 开放体验入口,并提供了十多个模板,所有人可以直接免费使用。

图片
  • 论文:https://arxiv.org/abs/2504.02433v1

  • 项目页:https://humanaigc.github.io/omnitalker

  • 体验页:https://huggingface.co/spaces/Mrwrichard/OmniTalker

我们先来看两段视频,就能感知到生成内容的真实感有多强:

是不是已经分辨不出小李子莱昂纳多和 LeCun 是AI复刻出来的了?感兴趣的读者也可以从项目页查看更多Demo。

接下来,就让我们看下阿里通义实验室 HumanAIGC 团队对此论文的解读。

背景

近年来,随着语言大模型的迅速发展,虚拟主播、虚拟助手等应用得到了广泛的推广与使用。然而,针对文本驱动的数字人生成研究仍然较少,现有方法主要采用级联流水线的方式,将文本转语音(Text-to-Speech, TTS)系统与音频驱动的数字人模型相结合。这种传统流水线一方面引入了系统复杂性和延迟开销,尤其是在实时互动场景下,各模块之间的延迟问题成为影响用户体验的重要因素;另一方面还从根本上存在音画输出不同步以及生成语音与视觉表情风格不一致的问题,无法完美复制真人的说话风格。

为了解决这些局限性,我们提出了 OmniTalker,能够在零样本实时场景中,根据文本和参考视频同时生成同步的语音和数字人视频,同时保留语音风格和面部风格。该框架采用双分支 DiT 架构:音频分支从文本合成梅尔频谱图,而视觉分支预测精细的头部姿态和面部动态。为了桥接模态间的信息,我们引入了一种新颖的视听融合模块,整合跨模态信息以确保音频和视觉输出在时间上的同步性和风格上的一致性。此外,我们的上下文参考学习模块能够从单个参考视频中有效捕捉语音和面部风格特征,而无需额外引入风格提取模块。此方法特别注重保持声音的一致性和说话风格的真实性,同时优化了处理速度,确保了实时响应性能,从而显著提升了数字人生成的质量和效率。相较于传统的数字人生产流程,此方法能够有效降低制作成本,提高生成内容的真实感和互动体验,满足更广泛的应用需求。

图片

图 1. 区别于传统级联框架,OmniTalker 是一个端到端的统一框架,可根据文本和一段简短的参考音视频实时生成同步的语音和数字人视频,同时保持声音的一致性和说话风格的真实性。

方法介绍

图片

                                     图 2. OmniTalker 结构图

我们的目标是在紧凑的网络架构中实现音视频联合生成,确保音频和视频输出之间的对应关系,同时从参考视频中复制声音和面部风格。受启发于 LLM 的上下文学习能力,以及多模态 DiT 在文生图中的优势,我们提出了如图 2 所示的模型架构。该架构有三个核心部分:(1)三个嵌入模块来分别捕捉参考音视频的动态特征以及文本信息,(2)一个双流 DiT 模型用于音视频并行建模,以及 (3) 一个音视频特征融合模块来确保音视频特征的紧密同步。

1. 模型输入方面,包含驱动文本和参考音视频三种模态特征:

  1. 音频特征:我们从参考视频中提取音频流,并利用梅尔谱图作为音频特征的表示方法。通过一个基于 MLP 的嵌入模块,我们将梅尔谱图转换为音频嵌入 x^a;

  2. 文本特征:使用 ASR 模型将参考音频转化为文字,形成参考文本。随后,输入文本以及参考文本被转换成拼音序列(针对中文)或字符 / 字母序列(针对拉丁语系),并进行拼接。为了匹配音频嵌入 x^a 的长度,我们以某种填充标记对文本序列进行填充。文本嵌入过程采用了 ConvNeXt-V2 架构,生成的文本嵌入c_t作为条件指导音频和视觉分支的处理。

  3. 视觉特征:对于视频片段,我们提取包含面部表情的 51 维混合形状系数、6 维旋转与平移参数(RT),以及每帧的眼球运动系数在内的视觉编码。如同处理音频特征一样,这些视觉编码也通过一个 MLP 映射到视觉嵌入 x^v 上,以实现统一的特征表示。

在训练阶段,音频和视觉特征会随机掩码序列的一部分,利用上下文学习来达成风格复刻的需求;而在推理阶段,则依据参考音频的节奏及输入文本的长度对音视频特征进行零填充,确保处理的一致性。

2. 关于模型结构,我们方法的核心在于建模视频、音频和文本模态之间的交互,旨在生成既连贯又同步的音视频内容。我们的框架由一系列专门设计用于处理音频和视频数据流的 DiT 块组成,促进音频和视频特征间的跨模态融合,从而产出一致且同步的结果。模型的关键组件包括:

  1. 音视频特征融合模块:采用双分支架构,一个分支专注于处理视觉运动信息,另一个则负责解析音频信息。利用 MM-DiT 注意力机制,网络能够动态评估并平衡音频与视觉特征的重要性,确保最终生成的视频在时间轴上以及语义层面与输入音频完美对齐。

  2. 单模态 DiT 块:在完成初步的跨模态融合后,模型使用多个单模态 DiT 块进一步细化生成过程。这些块操作于已融合的多模态特征之上,但针对每个单独模态(即音频或视觉)进行优化,以提高输出质量。

  3. 音视频解码器:经过上述步骤生成的音视频特征随后通过预训练的解码器转换回原始格式。对于音频部分,我们使用 Vocos 解码器将合成的梅尔频谱图还原为语音,这是一种高保真声码器,也可替换为其他相似声码器如 HiFi-GAN。至于视频解码,我们设计了一个 GAN 模型(复用 ChatAnyone),它根据从参考视频中随机选取的参考帧为基础,并按照 DiT 模型预测的头部姿态和混合形状系数生成新的视频帧。该模型能以 30FPS 的速度生成分辨率为 512×512 的帧,满足实时推理的需求。

实验结果

鉴于当前尚无方法能够同时生成音频和视频,我们对文本转语音(TTS)技术和音频驱动的数字人生成(Talking Head Generation, THG)技术分别进行了比较分析。在 TTS 方面,我们挑选了三种代表性方法:MaskGCT、F5TTS 和 CosyVoice,并针对错词率(WER)和声音相似度(SIM)进行了对比评估。对于 THG 的评估,我们构建了一个多模态比较框架,涵盖以下几类方法:(1) 两种基于 GAN 的技术(SadTalker 和 AniTalker);(2) 两种最先进的基于 diffusion 的方法(EchoMimic 和 Hallo);(3) StyleTalk,一种具备风格保留功能的音频驱动 THG 方法。为了确保公平性和结果的可比性,实验中所有 THG 模型均采用由我们提出的方法生成的音频信号作为输入。

图片

                                                           表 1. TTS 性能对比

表 1 展示了我们的方法在音频测试集 Seed 上的测试结果,与 TTS 基线模型相比,我们的生成结果显示出更低的错词率(WER),这表明生成的音频与文本之间具有更高的一致性。此外,我们的方法在声音相似度(SIM)指标中排名第二,进一步证实了其在零样本条件下保持声音特征的能力。值得注意的是,通过对比包含和不包含运动分支(Ours w/o motion)的模型表现,可以看出完整模型实现了更低的 WER,这证明了结合视觉监督能有效提升生成音频的感知质量。我们将这种改进归因于多任务学习的有效性,因为在音频生成和面部动作之间存在着高度的相关性,两者结合可以相互促进,从而提高整体输出的质量。

在视觉质量评估方面,除了传统的峰值信噪比(PSNR)、结构相似性(SSIM)、Frechet Inception Distance(FID)、Frechet Video Distance(FVD)、ID 相似度(CSIM)以及口型同步(Sync-C)等指标外,我们还引入了两个新的评估标准 ——E-FID(表情 FID)和 P-FID(姿势 FID),以分别衡量生成的面部表情和头部姿势的真实感。具体而言,E-FID 结合了 51 维面部混合形状系数和 4 维眼动参数进行计算,而 P-FID 则通过 6 维旋转 - 平移参数来量化头部姿势的一致性和真实性。

图片

                                表 2. THG 性能对比

表 2 展示了 OmniTalker 在视觉生成方面的卓越性能。我们的方法在 9 个核心指标中,有 7 个达到了业界领先水平(SOTA),包括最高的 PSNR 和 SSIM,以及最低的 FID 和 FVD。

这些结果表明,我们的方法在视频生成质量方面具有显著优势。尤其在 E-FID 和 P-FID 上,我们的方法相比现有技术实现了一个数量级的提升,突显了其在保持面部运动风格和头部姿态方面的出色能力。这种能力使得我们的方法能够有效地继承参考人物的说话风格,从而实现高保真的音视频克隆。尽管我们的方法在 CSIM 和 Sync-C 指标上获得了次优成绩,但根据我们的经验观察,这些指标倾向于偏好正面视角的视频。相比之下,其他对比方法更倾向于生成正面视角的内容,而忽略了参考视频中实际的面部朝向。我们的方法通过准确捕捉并再现原始视频中的面部方向,提供了更加真实和自然的输出效果。

为了更直观地展示 OmniTalker 建模面部运动风格方面的卓越能力,我们对比了不同方法生成结果中的头部运动累积热图。如图 4 所示,通过将生成的视频与参考视频进行比较,可以清晰地看到,我们的方法生成的热图与真实数据的热图更为接近。图 3 则从时间维度进一步验证了这一点,我们选择头部偏航角(Yaw)作为跟踪指标来观察头部姿态的变化。左侧的红线代表参考序列,右侧展示了由各种方法生成的序列。结果显示,我们方法生成的序列无论是在幅度还是运动频率方面,都与参考序列保持了高度的一致性,同时保留了必要的自然差异,这表明我们的方法能够有效地继承头部姿态的风格特征。相比之下,其他方法生成的头部运动往往不够明显,缺乏动态变化。特别是 StyleTalk 方法直接复制参考姿势序列,虽然保证了与参考姿势的高度一致,但未能考虑语音内容与姿态之间的语义关联,导致生成结果缺乏灵活性和自然感。

综上所述,我们的方法不仅能够在视觉表现上精确模仿原始视频中的面部运动风格,还能在语义层面上实现更加丰富和自然的表现,确保生成的内容既真实又生动。

图片

                               图 3. 头部姿态(Yaw)时间变化曲线

图片

                              图 4. 头部运动累积热图

在实时性方面,我们的方法通过创新地采用 flow matching 技术以及相对紧凑的模型架构(仅包含 8 亿个参数),实现了音视频的实时同步高质量输出。这不仅保证了出色的推理速度,同时也确保了输出的质量优于其他现有方法,如表 2 所示。这种能力使得我们的方法在不牺牲输出质量的前提下,满足了实时应用的需求。

团队介绍

阿里巴巴通义实验室的 HumanAIGC 团队专注于 2D 数字人和人物视频生成的研究,在相关领域内已发表了多篇顶会论文,比如单图驱动角色视频生成 Animate Anyone 以及 Animate Anyone2,单图语音驱动视频生成技术 EMO 以及 EMO2,实时数字人 ChatAnyone 等均出自该团队。

]]>

联系我们