动态列表

  • 刚刚!谷歌内部揭秘Genie 3:Sora后最强AI爆款,开启世界模型新时代
  • 硬核拆解!从GPT-2到gpt-oss,揭秘大模型进化关键密码
  • 黄仁勋子女逆袭上位!4万亿「皇储」成长史首曝:一个学烘培,一个开酒吧
  • GPT-5首次会推理,OpenAI联创曝AGI秘诀!超临界学习吞噬算力,2045金钱无用?
  • 400万人围观的分层推理模型,「分层架构」竟不起作用?性能提升另有隐情?
  • CoRL 2025|隐空间扩散世界模型LaDi-WM大幅提升机器人操作策略的成功率和跨场景泛化能力
  • SEAgent:开启从实战经验中自我进化的GUI智能体新纪元
  • OpenAI估值达5000亿美元;「原道」联手小岛秀夫,推《死亡搁浅》耳机;苹果手表将「大幅重新设计」
  • 奥特曼神秘晚宴讲话曝出!OpenAI的CEO或将是个AI,Chrome我也想买
  • 谷歌最新「0.27B」Gemma 3开源!身板小却猛如虎,开发者直呼救命稻草
  • 最惨就业季!CS学霸GPA 3.98,投2500份简历仅10次面试,AI吞噬入门级岗位
  • Yann LeCun最新纪录片首曝!传奇AI教父的双面人生,深度学习幕后40年
  • 大模型如何推理?斯坦福CS25重要一课,DeepMind首席科学家主讲
  • 当AI比我们更聪明:李飞飞和Hinton给出截然相反的生存指南
  • 简单即强大:全新生成模型「离散分布网络DDN」是如何做到原理简单,性质独特?
  • Sam Altman:AI存在泡沫;宇树机器人夺金,王兴兴:用遥控追求极致速度;蔡浩宇AI游戏上架,27.19元|极客早知道
  • 吞下17亿图片,Meta最强巨兽DINOv3开源!重新定义CV天花板
  • 打开高德的理由又多一条!全球首个「需求链智能调度」AI地图上线
  • 核心模型被曝蒸馏DeepSeek?前女友一纸控诉,曝出欧版OpenAI塌房真相!
  • 一句话搞定多任务出行,高德用空间智能重新定义地图
  • GPT-5、Grok 4、o3 Pro都零分,史上最难AI评测基准换它了
  • 谷歌开源Gemma 3 270M,性能超越Qwen 2.5同级模型
  • 追剧不断网,可能背后有个AI在加班,故障诊断准度破91.79%
  • Meta视觉基座DINOv3王者归来:自监督首次全面超越弱监督,商用开源
  • 多突触神经元模型问世,国内团队打造类脑计算新引擎,登上《自然·通讯》
  • Science封面:高效精准模拟构象变化,微软研究院用生成式AI重塑蛋白质功能研究
  • 扎克伯格看OpenAI直播挖人,北大校友孙之清加入Meta
  • AI 模特时代到来:字节x清华推出商用级视频换装模型DreamVVT,保真度显著领先SOTA
  • LeetCode刷够100小时,学会找人内推,OpenAI员工下场教你拿Offer
  • xAI元老离职干风投,传奇人物Babuschkin长文追忆与马斯克创业战友情
  • 链式思维是幻象吗?从数据分布视角重新审视大模型推理,马斯克回复,Grok破防
  • 李想:i8 反响不错,产品力没对手;库克暗示:苹果将推桌面机器人;中国日均消耗 30 万亿 Token,暴涨 300 倍
  • ChatGPT会让大脑退化?OpenAI高管用它救下自己「读写障碍」的女儿
  • 谷歌超级编码智能体正式上岗!125刀大会员,每天300任务任意跑
  • Meta华人天才毕树超「叛逃」预言:OpenAI未竟交互革命,暗藏万亿赛道
  • 美国CS就业梦碎!狂投5000家0 Offer,名校毕业00后被麦当劳惨拒
  • 3 分钟,我学会了像鸟儿一样飞行 | New Things
  • 从隐私计算迈向六大数据流通全栈技术,“隐语”开源社区升级
  • 7天,一场风暴!理想 i8「刮骨疗毒」,怒砍两个版本
  • 小订过万!打死不说价格的全新小鹏 P7,用颜值吊起了所有人的胃口!
  • 对话理想智驾负责人:撕掉「奶爸车」标签,智驶是理想的「新引擎」
  • 告别「偏科生」时代!36 万的坦克500,让对手从此无路可走
  • 万字长谈王小川:不再迎合他人做学霸,我要解自己的命题
  • 刚刚,全网最懂图文调研的智能体模型震撼上线,看完我直接卸了浏览器
  • ICCV 2025 | HVPL:分层视觉提示学习,让“视频实例分割”模型告别灾难性遗忘
  • 复旦&微软提出StableAvatar: 首个端到端“无限时长”音频驱动的人类视频生成新框架!
  • 千支队伍争锋!首届「启智杯」算法大赛圆满落幕,助推AI应用落地
  • 冗长响应缩减80%,DeepSeek GRPO获得颠覆性改进,微软GFPO问世
  • ICCV 2025 | HERMES:首个统一3D场景理解与生成的世界模型
  • 苹果 AI 下半场:年底问世的新 Siri,要彻底改变 iPhone 的交互
  • GNN+KAN,把三角函数当「激活」选项,山大、南洋理工让分子图更会读化学子结构
  • 港大联手月之暗面等开源OpenCUA:人人可造专属电脑智能体
  • 破解「长程智能体」RL训练难题,腾讯提出RLVMR框架,让7B模型「思考」比肩GPT-4o
  • AI独角兽498家,估值2.7万亿美元;《王者荣耀》连续三年成全球最吸金手游;抖音测试「快递」服务|极客早知道
  • 奥特曼公然叫板马斯克!重金杀入脑机接口,硅谷两大巨头彻底决裂
  • AI女友24h陪玩,全球800万人上头!这群AI创企靠百度开挂
  • 马斯克删除xAI「研究员」职位引爆网络!LeCun怒批:如此暴力将扼杀创新
  • OpenAI女CEO太狠了!智商148,GPT-5才是真印钞机
  • AI 和海外游戏发力,腾讯重回 7000 亿美金
  • Kimi K2背后的冷门绝招:海量语料“重写”如何榨干每个token?
  • ICML 2025 | 奖励模型还用人标?APEC用对抗模仿生成偏好,泛化能力直线上升
  • Attention Sink的起源找到了?清华×美团首次锁定MoE中的「超级专家」
  • 博士申请 | 休斯敦大学计算机系刘锦阳老师招收高性能计算/数据压缩方向博士生
  • 告别Transformer,重塑机器学习范式:上海交大首个「类人脑」大模型诞生
  • AI 上新|在 Edge 浏览器里,我第一次感受到了 AI 的「人味」
  • Agent狂欢下的冷思考:为什么说Data&AI数据基础设施,才是AI时代Infra新范式
  • AI顶会模式出了问题? 「不发表,就出局」的恶性循环,正在压垮整个AI学界
  • 研究者警告:强化学习暗藏「策略悬崖」危机,AI对齐的根本性挑战浮现
  • 多模态大脑建模技术迈入新纪元:Meta 10亿参数模型获Algonauts 2025大脑建模竞赛冠军
  • OpenAI没开源的gpt-oss基础模型,他去掉强化学习逆转出来了
  • 当人们怀念 GPT-4o,他们在「怀念」什么?
  • IEEE TPAMI 南洋理工&哈工大提出 MARCONet++ 攻克中文文本图像超分难题
  • 耶鲁&大连理工&南洋理工等提出MDCNeXt:X射线下的“动力电池缺陷精准检测”新范式
  • 6秒造一个「视频博主」,Pika让一切图片开口说话
  • 破解AI创企的「不可能三角」,解药不止「大模型」
  • OpenAI和奥特曼将投资一家脑机接口公司,直接与马斯克的Neuralink竞争
  • 大型语言模型稳定强化学习的新路径:几何平均策略优化GMPO
  • 传 DeepSeek-R2 8 月发布;微信测试信用借款功能;Perplexity 要 345 亿美元收购 Chrome
  • 一觉醒来,GitHub没了?CEO辞职,微软接管,开发者天塌了
  • AI全国榜单爆冷,全网吃瓜大狂欢!这家黑马竟靠DeepSeek杀进全国TOP 2
  • 物理学「AlphaGo时刻」?40年未竟之事被AI一举攻破,顶尖物理学家集体傻眼
  • 刚刚,商汤内部两万字复盘曝光:多模态通往AGI核心路线首次公开
  • 从物竞天择到智能进化,首篇自进化智能体综述的ASI之路
  • 破解效率与成本难题:华为UCM技术推动AI推理体验升级
  • SIGGRAPH上,英伟达发布物理AI开源新技术,更新RTX Pro产品线
  • 身家25亿刀,是四家公司创始人,这位伯克利教授还在给本科生上课
  • 商汤王晓刚:世界模型将加快AI从数字空间进入物理世界,「悟能」想做那个桥梁
  • 后训练轻量「小枝」强势出击!极限剪裁视觉token,推理加速154%
  • 北京内推 | 度小满金融视觉和多模态团队招聘视觉多模态算法实习生
  • 实验室抢显卡抢破头?A800/H800骨折价来袭,超值返券助你轻松冲DDL!
  • TCSVT 2025 | 跨模态学习助力复杂工业过程异常检测:FmFormer框架与基准测试新突破
  • ICCV 2025 | LightSwitch:CMU提出材质引导的扩散模型,2分钟实现高质量三维场景重打光
  • AI全面挖掘微蛋白价值:首次引入合成负样本训练,剔除92%噪声,摆脱保守依赖
  • 是「福尔摩斯」,也是「列文虎克」,智谱把OpenAI藏着掖着的视觉推理能力开源了
  • 东方理工·甬江论坛|新大学、新使命,邀你共启未来
  • LLM总是把简单任务复杂化,Karpathy无语:有些任务无需那么多思考
  • ICCV 2025 | 小红书AIGC团队提出图像和视频换脸新算法DynamicFace
  • 聚焦前沿,见证未来!「X·创新』产品SHOW圆满举办!
  • 刚刚,OpenAI拿下IOI金牌,仅次于前五名人类选手!参赛推理模型才夺得IMO金牌
  • Lumina-mGPT 2.0:自回归模型华丽复兴,媲美顶尖扩散模型
  • 雷军:小米YU7改名,被误会是丐版;传淘宝闪购周末峰值超美团;低价 MacBook 或年底亮相,599 美元
  • OpenAI开源霸权5天终结,百川M2一战夺冠!实测比GPT更懂中国医疗
  • 硅谷精英放弃生娃!MIT女记者揭秘:人类只是AI垫脚石,世界很快就毁灭
  • 41个榜单SOTA!智谱最新开源GLM-4.5V实测:看图猜地址、视频秒变代码
  • 2025全球大模型应用报告:红海混战「忠诚度」瓦解,用户脚踏4.7条船!
  • 昆仑万维发布新模型 SkyReels-A3,开启五天技术发布周
  • 世界机器人大会:笨拙的今天,与狂奔的明天
  • 「一只手有几根手指」,你的GPT-5答对了吗?
  • 4D空间智能:AI如何一步步「看懂」时空结构?一篇综述解析通往四维世界的五大层次
  • 智谱终于发布GLM-4.5技术报告,从预训练到后训练,细节大公开
  • 从捍卫者到引路人,上交&上海AI Lab提出LEGION:不仅是AI图像伪造克星,还能反哺生成模型进化?
  • ICCV 2025 | 机器人自主探索未知复杂空间?GLEAM破解主动探索建图的泛化难题
  • 脑子比不过AI,手也要沦陷了?这只灵巧手看得我有点慌
  • 第二届 “兴智杯” 全国人工智能创新应用大赛专题活动明天开启,技术解析 + 资源对接一站式平台重磅来袭!
  • 机器人上下文协议首次开源:阿里达摩院一口气放出具身智能「三大件」
  • Attention Sink产生的起点?清华&美团首次揭秘MoE LLM中的超级专家机制
  • 具身智能技术与应用论坛圆满举行,北京人形公布多项创新成果
  • ACL 2025 | 湖南大学、腾讯生命科学实验室等提出蛋白互作预测新方法,让LLM学会解读蛋白质网络
  • 宇树、银河通用都在用:英伟达「物理AI」技术亮相世界机器人大会
  • CVPR 2025 | DPC:用于微调视觉-语言模型的双提示协作
  • ICCV 2025 | 终结灾难性遗忘!南大提出外部知识注入机制,刷新CLIP持续学习SOTA
  • 超越样本级RL!人大×快手提出ARPO:熵驱动Agent探索,多轮推理性能飙升
  • 北京/上海内推 | 盛大集团AI创新中心招聘大模型/Agent方向算法实习生
  • 毒液抗菌搭配深度学习,千万级数据组中筛得386条备选,91.4%体外验证成功

让强化学习快如闪电:FlashRL一条命令实现极速Rollout,已全部开源

在今年三月份,清华 AIR 和字节联合 SIA Lab 发布了 DAPO,即 Decoupled Clip and Dynamic sAmpling Policy Optimization(解耦剪辑和动态采样策略优化)。这是一个可实现大规模 LLM 强化学习的开源 SOTA 系统,使用该算法,该团队成功让 Qwen2.5-32B 模型在 AIME 2024 基准上获得了 50 分,我们也做了相关报道

image.png

  • 论文地址:https://dapo-sia.github.io/static/pdf/dapo_paper.pdf

  • 代码地址:https://github.com/volcengine/verl/tree/gm-tyx/puffin/main/recipe/dapo

中国科学技术大学校友,伊利诺伊大学香槟分校博士,微软研究院的首席研究员刘力源、清华大学校友,加州大学圣地亚哥分校计算机科学与工程学院博士生姚峰团队在强化学习的研究中更进一步。

该团队发现,在 DAPO-32B 中,rollout 生成是强化学习训练的主要瓶颈,占据了约 70% 的总训练时间。因此,该团队从 rollout 阶段着手,将 8 bit 量化技术应用于 rollout 生成,并通过 TIS 技术在保持下游性能的同时实现了显著加速。

众所周知,FP8 能让强化学习运行得更快,但往往以性能下降为代价。

刘力源、姚峰团队推出 FlashRL,是首个开源且可用的强化学习实现方案,在推理执行(rollout)阶段应用 INT8/FP8,并且在性能上与 BF16 持平,没有性能损失。该团队在博客中完整发布了该方法的技术细节。

image.png

  • 博客标题:FlashRL: 8Bit Rollouts, Full Power RL

  • 博客地址:https://fengyao.notion.site/flash-rl

  • 代码地址:https://github.com/yaof20/Flash-RL

Rollout 量化可能会降低性能

如图 1 和图 2 中 「⋅⋅⋅⋅⋅」 曲线所示,在未使用 TIS 技术的情况下,采用 FP8 或 INT8 进行 rollout 量化,相比 BF16 rollout 会带来显著的性能下降。

这一现象是预期中的,因为 rollout–训练之间的差异被放大了:rollout 是从量化策略 π_int8 采样的,但梯度却是基于高精度策略 π_bf16 计算的。

image.png

这种不匹配会使强化学习过程更加偏离策略,从而削弱强化学习训练的有效性。

image.png

图 1  左图:吞吐量加速比。FP8 结果在 H100 上测试;INT8 结果分别在 H100 和 A100 上测试。结果基于不同的响应长度和设备测得。右图:Qwen2.5-32B 模型在使用 BF16 rollout 与 INT8 rollout 时的 AIME 准确率对比。所有实验均采用 BF16 FSDP 训练后端。

FlashRL 的独门秘诀

FlashRL 是首个开源且可用的强化学习方案,能够在不牺牲下游性能的前提下使用量化 rollout。

那么,它的「独门秘诀」是什么呢?

解决 Rollout–训练不匹配问题

该团队引入了截断重要性采样(Truncated Importance Sampling,TIS)来减轻 rollout 与训练之间的差距。正如图 1 和图 2 中的实线所示,TIS 使量化 - rollout 训练的性能达到了与采用 TIS 的 BF16 rollout 训练相同的水平 —— 甚至超过了未使用 TIS 的朴素 BF16 rollout 训练。

作者团队之前发表过有关 TIS 的技术博客,感兴趣的读者可以参考:

image.png

  • 博客标题:Your Efficient RL Framework Secretly Brings You Off-Policy RL Training

  • 博客链接:https://fengyao.notion.site/off-policy-rl

在这里简单展示一下 TIS 的工作原理。

image.png

支持在线量化

现有的推理引擎(如 vLLM)针对大语言模型推理服务进行了优化,但在支持带参数更新的模型量化方面能力有限。该团队提供了 Flash-LLM-RL 包,对 vLLM 进行了补丁,使其能够支持这一功能。

如图所示,FlashRL 的 INT8 可带来高达 1.7 倍的吞吐量提升,同时保持 RL 的优势。此外,如果不使用 TIS 而使用 naive FP8/INT8 ,性能将显著下降。

image.png

图 2  左图与中图:在使用量化 rollout 生成的强化学习大语言模型训练中,GSM8K 的准确率表现。请注意,TIS 对缓解分布差异至关重要。右图:π_fsdp 与 π_vllm 之间的 KL 散度。需要注意的是,INT8 rollout 的 KL 散度大于 FP8 rollout 的 KL 散度。

FlashRL 能有多快?

比较在强化学习训练中采用不同 rollout 精度的吞吐量并不简单,因为模型会不断更新,对于同一个查询,不同的量化策略在经过一定的 RL 训练迭代后可能会生成长度不同的回复。

这里将探讨 FlashRL 所实现的加速效果及其对训练效果的影响。

Rollout 加速表现

常规环境下的加速:

研究团队记录了在 7B、14B 和 32B Deepseek-R1-Distill-Qwen 模型上使用 INT8、FP8 和 BF16 精度的 rollout 吞吐量。

图 1 显示了 8 位量化模型相对于 BF16 的加速比。对于较小的 7B 模型,加速比不足 1.2×;而在 32B 模型上,加速比可达 1.75×。这表明量化对大模型的收益远高于小模型。基于分析结果,团队建议仅在模型规模超过 140 亿参数时使用量化。

内存受限环境下的加速:

研究团队还评估了在标准推理场景(不涉及 RL)下,采用 8 位量化所能带来的吞吐量提升。具体而言,团队测量了 INT8 的加速比,作为压力测试,用于验证其在 A100/A6000 和 H100 GPU 上的适用性。

使用 vLLM 在相同数据集上分别服务 BF16 与 INT8 量化版本的 Deepseek-R1-Distill-Qwen-32B 模型,并在 A100/A6000 和 H100 GPU 上记录其吞吐量。

image.png

图 3  在 4 种仅推理配置下,INT8 量化的 Deepseek-R1-Distill-Qwen-32B 相对于 BF16 的吞吐量加速比,测量结果涵盖不同回复长度。

如图 3 所示,当 GPU 内存成为瓶颈时,量化能够带来极高的加速比 —— 在 TP2-A6000 配置下生成速度提升超过 3 倍,在 TP1-A100 配置下提升甚至超过 5 倍。这突显了量化在 GPU 内存受限场景(如服务更大规模模型)中的巨大潜力。

端到端加速与效果验证

研究团队将 FlashRL 部署于 DAPO-32B 的训练中,以验证所提方法的有效性。由于在图 2 中 FP8 相比 INT8 拥有更小的分布差距,特意选择 INT8 作为更具挑战性的测试场景。

图 4 展示了在 BF16 与 INT8 rollout 下的下游性能与训练加速效果。两种配置在 AIME 基准上的准确率相当,但 INT8 显著提高了训练速度。

这些结果证明,FlashRL 能在不牺牲训练效果的前提下,实现显著的训练加速。

image.png

图 4. 左图:使用 BF16 与 INT8 rollout 精度进行强化学习训练的下游性能对比。右图:BF16 与 INT8 rollout 在单位小时内可完成的更新步数。所有实验均基于 DAPO 配方,在 Qwen2.5-32B 模型上进行,训练 250 步,硬件配置为 4 个节点、每节点配备 8 张 H100 GPU。

快速使用

使用 FlashRL 只需一条命令! 使用 pip install flash-llm-rl 进行安装,并将其应用于你自己的 RL 训练,无需修改你的代码。

FlashRL 方法支持 INT8 和 FP8 量化,兼容最新的 H100 GPU 以及较老的 A100 GPU。

image.png

更多方法细节,请参阅原博客。

]]>

联系我们