动态列表

  • 刚刚!谷歌内部揭秘Genie 3:Sora后最强AI爆款,开启世界模型新时代
  • 硬核拆解!从GPT-2到gpt-oss,揭秘大模型进化关键密码
  • 黄仁勋子女逆袭上位!4万亿「皇储」成长史首曝:一个学烘培,一个开酒吧
  • GPT-5首次会推理,OpenAI联创曝AGI秘诀!超临界学习吞噬算力,2045金钱无用?
  • 400万人围观的分层推理模型,「分层架构」竟不起作用?性能提升另有隐情?
  • CoRL 2025|隐空间扩散世界模型LaDi-WM大幅提升机器人操作策略的成功率和跨场景泛化能力
  • SEAgent:开启从实战经验中自我进化的GUI智能体新纪元
  • OpenAI估值达5000亿美元;「原道」联手小岛秀夫,推《死亡搁浅》耳机;苹果手表将「大幅重新设计」
  • 奥特曼神秘晚宴讲话曝出!OpenAI的CEO或将是个AI,Chrome我也想买
  • 谷歌最新「0.27B」Gemma 3开源!身板小却猛如虎,开发者直呼救命稻草
  • 最惨就业季!CS学霸GPA 3.98,投2500份简历仅10次面试,AI吞噬入门级岗位
  • Yann LeCun最新纪录片首曝!传奇AI教父的双面人生,深度学习幕后40年
  • 大模型如何推理?斯坦福CS25重要一课,DeepMind首席科学家主讲
  • 当AI比我们更聪明:李飞飞和Hinton给出截然相反的生存指南
  • 简单即强大:全新生成模型「离散分布网络DDN」是如何做到原理简单,性质独特?
  • Sam Altman:AI存在泡沫;宇树机器人夺金,王兴兴:用遥控追求极致速度;蔡浩宇AI游戏上架,27.19元|极客早知道
  • 吞下17亿图片,Meta最强巨兽DINOv3开源!重新定义CV天花板
  • 打开高德的理由又多一条!全球首个「需求链智能调度」AI地图上线
  • 核心模型被曝蒸馏DeepSeek?前女友一纸控诉,曝出欧版OpenAI塌房真相!
  • 一句话搞定多任务出行,高德用空间智能重新定义地图
  • GPT-5、Grok 4、o3 Pro都零分,史上最难AI评测基准换它了
  • 谷歌开源Gemma 3 270M,性能超越Qwen 2.5同级模型
  • 追剧不断网,可能背后有个AI在加班,故障诊断准度破91.79%
  • Meta视觉基座DINOv3王者归来:自监督首次全面超越弱监督,商用开源
  • 多突触神经元模型问世,国内团队打造类脑计算新引擎,登上《自然·通讯》
  • Science封面:高效精准模拟构象变化,微软研究院用生成式AI重塑蛋白质功能研究
  • 扎克伯格看OpenAI直播挖人,北大校友孙之清加入Meta
  • AI 模特时代到来:字节x清华推出商用级视频换装模型DreamVVT,保真度显著领先SOTA
  • LeetCode刷够100小时,学会找人内推,OpenAI员工下场教你拿Offer
  • xAI元老离职干风投,传奇人物Babuschkin长文追忆与马斯克创业战友情
  • 链式思维是幻象吗?从数据分布视角重新审视大模型推理,马斯克回复,Grok破防
  • 李想:i8 反响不错,产品力没对手;库克暗示:苹果将推桌面机器人;中国日均消耗 30 万亿 Token,暴涨 300 倍
  • ChatGPT会让大脑退化?OpenAI高管用它救下自己「读写障碍」的女儿
  • 谷歌超级编码智能体正式上岗!125刀大会员,每天300任务任意跑
  • Meta华人天才毕树超「叛逃」预言:OpenAI未竟交互革命,暗藏万亿赛道
  • 美国CS就业梦碎!狂投5000家0 Offer,名校毕业00后被麦当劳惨拒
  • 3 分钟,我学会了像鸟儿一样飞行 | New Things
  • 从隐私计算迈向六大数据流通全栈技术,“隐语”开源社区升级
  • 7天,一场风暴!理想 i8「刮骨疗毒」,怒砍两个版本
  • 小订过万!打死不说价格的全新小鹏 P7,用颜值吊起了所有人的胃口!
  • 对话理想智驾负责人:撕掉「奶爸车」标签,智驶是理想的「新引擎」
  • 告别「偏科生」时代!36 万的坦克500,让对手从此无路可走
  • 万字长谈王小川:不再迎合他人做学霸,我要解自己的命题
  • 刚刚,全网最懂图文调研的智能体模型震撼上线,看完我直接卸了浏览器
  • ICCV 2025 | HVPL:分层视觉提示学习,让“视频实例分割”模型告别灾难性遗忘
  • 复旦&微软提出StableAvatar: 首个端到端“无限时长”音频驱动的人类视频生成新框架!
  • 千支队伍争锋!首届「启智杯」算法大赛圆满落幕,助推AI应用落地
  • 冗长响应缩减80%,DeepSeek GRPO获得颠覆性改进,微软GFPO问世
  • ICCV 2025 | HERMES:首个统一3D场景理解与生成的世界模型
  • 苹果 AI 下半场:年底问世的新 Siri,要彻底改变 iPhone 的交互
  • 港大联手月之暗面等开源OpenCUA:人人可造专属电脑智能体
  • 破解「长程智能体」RL训练难题,腾讯提出RLVMR框架,让7B模型「思考」比肩GPT-4o
  • AI独角兽498家,估值2.7万亿美元;《王者荣耀》连续三年成全球最吸金手游;抖音测试「快递」服务|极客早知道
  • 奥特曼公然叫板马斯克!重金杀入脑机接口,硅谷两大巨头彻底决裂
  • AI女友24h陪玩,全球800万人上头!这群AI创企靠百度开挂
  • 马斯克删除xAI「研究员」职位引爆网络!LeCun怒批:如此暴力将扼杀创新
  • OpenAI女CEO太狠了!智商148,GPT-5才是真印钞机
  • AI 和海外游戏发力,腾讯重回 7000 亿美金
  • 博士申请 | 休斯敦大学计算机系刘锦阳老师招收高性能计算/数据压缩方向博士生
  • Attention Sink的起源找到了?清华×美团首次锁定MoE中的「超级专家」
  • ICML 2025 | 奖励模型还用人标?APEC用对抗模仿生成偏好,泛化能力直线上升
  • Kimi K2背后的冷门绝招:海量语料“重写”如何榨干每个token?
  • 告别Transformer,重塑机器学习范式:上海交大首个「类人脑」大模型诞生
  • AI 上新|在 Edge 浏览器里,我第一次感受到了 AI 的「人味」
  • Agent狂欢下的冷思考:为什么说Data&AI数据基础设施,才是AI时代Infra新范式
  • AI顶会模式出了问题? 「不发表,就出局」的恶性循环,正在压垮整个AI学界
  • 研究者警告:强化学习暗藏「策略悬崖」危机,AI对齐的根本性挑战浮现
  • 多模态大脑建模技术迈入新纪元:Meta 10亿参数模型获Algonauts 2025大脑建模竞赛冠军
  • 当人们怀念 GPT-4o,他们在「怀念」什么?
  • OpenAI没开源的gpt-oss基础模型,他去掉强化学习逆转出来了
  • 耶鲁&大连理工&南洋理工等提出MDCNeXt:X射线下的“动力电池缺陷精准检测”新范式
  • IEEE TPAMI 南洋理工&哈工大提出 MARCONet++ 攻克中文文本图像超分难题
  • 6秒造一个「视频博主」,Pika让一切图片开口说话
  • 破解AI创企的「不可能三角」,解药不止「大模型」
  • OpenAI和奥特曼将投资一家脑机接口公司,直接与马斯克的Neuralink竞争
  • 大型语言模型稳定强化学习的新路径:几何平均策略优化GMPO
  • 传 DeepSeek-R2 8 月发布;微信测试信用借款功能;Perplexity 要 345 亿美元收购 Chrome
  • 一觉醒来,GitHub没了?CEO辞职,微软接管,开发者天塌了
  • AI全国榜单爆冷,全网吃瓜大狂欢!这家黑马竟靠DeepSeek杀进全国TOP 2
  • 物理学「AlphaGo时刻」?40年未竟之事被AI一举攻破,顶尖物理学家集体傻眼
  • 刚刚,商汤内部两万字复盘曝光:多模态通往AGI核心路线首次公开
  • 让强化学习快如闪电:FlashRL一条命令实现极速Rollout,已全部开源
  • 从物竞天择到智能进化,首篇自进化智能体综述的ASI之路
  • 破解效率与成本难题:华为UCM技术推动AI推理体验升级
  • SIGGRAPH上,英伟达发布物理AI开源新技术,更新RTX Pro产品线
  • 身家25亿刀,是四家公司创始人,这位伯克利教授还在给本科生上课
  • 商汤王晓刚:世界模型将加快AI从数字空间进入物理世界,「悟能」想做那个桥梁
  • 实验室抢显卡抢破头?A800/H800骨折价来袭,超值返券助你轻松冲DDL!
  • 北京内推 | 度小满金融视觉和多模态团队招聘视觉多模态算法实习生
  • 后训练轻量「小枝」强势出击!极限剪裁视觉token,推理加速154%
  • ICCV 2025 | LightSwitch:CMU提出材质引导的扩散模型,2分钟实现高质量三维场景重打光
  • TCSVT 2025 | 跨模态学习助力复杂工业过程异常检测:FmFormer框架与基准测试新突破
  • AI全面挖掘微蛋白价值:首次引入合成负样本训练,剔除92%噪声,摆脱保守依赖
  • 是「福尔摩斯」,也是「列文虎克」,智谱把OpenAI藏着掖着的视觉推理能力开源了
  • 东方理工·甬江论坛|新大学、新使命,邀你共启未来
  • LLM总是把简单任务复杂化,Karpathy无语:有些任务无需那么多思考
  • ICCV 2025 | 小红书AIGC团队提出图像和视频换脸新算法DynamicFace
  • 聚焦前沿,见证未来!「X·创新』产品SHOW圆满举办!
  • 刚刚,OpenAI拿下IOI金牌,仅次于前五名人类选手!参赛推理模型才夺得IMO金牌
  • Lumina-mGPT 2.0:自回归模型华丽复兴,媲美顶尖扩散模型
  • 雷军:小米YU7改名,被误会是丐版;传淘宝闪购周末峰值超美团;低价 MacBook 或年底亮相,599 美元
  • OpenAI开源霸权5天终结,百川M2一战夺冠!实测比GPT更懂中国医疗
  • 硅谷精英放弃生娃!MIT女记者揭秘:人类只是AI垫脚石,世界很快就毁灭
  • 41个榜单SOTA!智谱最新开源GLM-4.5V实测:看图猜地址、视频秒变代码
  • 2025全球大模型应用报告:红海混战「忠诚度」瓦解,用户脚踏4.7条船!
  • 昆仑万维发布新模型 SkyReels-A3,开启五天技术发布周
  • 世界机器人大会:笨拙的今天,与狂奔的明天
  • 「一只手有几根手指」,你的GPT-5答对了吗?
  • 4D空间智能:AI如何一步步「看懂」时空结构?一篇综述解析通往四维世界的五大层次
  • 智谱终于发布GLM-4.5技术报告,从预训练到后训练,细节大公开
  • 从捍卫者到引路人,上交&上海AI Lab提出LEGION:不仅是AI图像伪造克星,还能反哺生成模型进化?
  • ICCV 2025 | 机器人自主探索未知复杂空间?GLEAM破解主动探索建图的泛化难题
  • 脑子比不过AI,手也要沦陷了?这只灵巧手看得我有点慌
  • 第二届 “兴智杯” 全国人工智能创新应用大赛专题活动明天开启,技术解析 + 资源对接一站式平台重磅来袭!
  • 机器人上下文协议首次开源:阿里达摩院一口气放出具身智能「三大件」
  • Attention Sink产生的起点?清华&美团首次揭秘MoE LLM中的超级专家机制
  • 具身智能技术与应用论坛圆满举行,北京人形公布多项创新成果
  • ACL 2025 | 湖南大学、腾讯生命科学实验室等提出蛋白互作预测新方法,让LLM学会解读蛋白质网络
  • 宇树、银河通用都在用:英伟达「物理AI」技术亮相世界机器人大会
  • CVPR 2025 | DPC:用于微调视觉-语言模型的双提示协作
  • ICCV 2025 | 终结灾难性遗忘!南大提出外部知识注入机制,刷新CLIP持续学习SOTA
  • 超越样本级RL!人大×快手提出ARPO:熵驱动Agent探索,多轮推理性能飙升
  • 北京/上海内推 | 盛大集团AI创新中心招聘大模型/Agent方向算法实习生
  • 毒液抗菌搭配深度学习,千万级数据组中筛得386条备选,91.4%体外验证成功

GNN+KAN,把三角函数当「激活」选项,山大、南洋理工让分子图更会读化学子结构

图片

编辑丨&

分子性质预测,通常关系到药物与材料研发中的核心要素。现代的科研流程里,图神经网络(GNN)的介入让传统方法更进一步。与此同时,柯尔莫哥洛夫-阿诺德网络 (KAN)提供了更高的表达性、参数效率和可解释性,已经成为多层感知器的强大替代品。

山东大学新加坡南洋理工大学的研究者对此产生了思考,是否可以结合这两者的优势,将分子预测做得更好、更快、更具可解释性。

他们的研究以「Kolmogorov–Arnold graph neural networks for molecular property prediction」为题,于 2025 年 8 月 11 日刊登在《Nature Machine Intelligence》。

图片

论文链接:https://www.nature.com/articles/s42256-025-01087-7

统一框架 KA-GNN

近年来,得益于诸如 AlphaFold 的模型,药物设计和发现进入了高速发展的新时代。这些基于分子的人工智能模型可以分为两类,即基于分子特征的机器学习和端到端的深度学习。

前者的关键过程是分子特征化,从结构、物理、化学或生物学性质中提取或生成分子特征;后者包括端到端的深度学习模型,使用各种分子表示方法,在分子数据分析和药物设计中得到了广泛应用。

Kolmogorov–Arnold 网络(KANs),基于 Kolmogorov–Arnold 表示定理,在求解偏微分方程中显示出潜力,还在多个应用领域中表现出色,譬如与长短期记忆网络结合,实现了多步时间序列预测的显著改进等。

研究者们所提出的统一框架 KA-GNN,该框架将 KANs 完全整合到 GNNs 的三个核心组件中,包括节点嵌入、消息传递和读出,这种设计既能捕捉低频的全局模式,也能表达高频的局部化结构,从理论上借助 Carleson 与 Fefferman 的收敛性结果给出强近似能力。

图片

图 1:KA-GNN 模型架构概述。

为了展示团队提出的傅里叶-KAN 模型的强大逼近能力。我们进一步设计了两种变体:KA-GCN(KAN 增强的 GCN)和 KAN 增强的图注意网络(KA-GAT),并在七个基准数据集上的广泛实验验证了 KA-GNN 在准确性和计算效率方面的优越性,确立了其作为非欧几里得数据 GDL 中一个有前途的新范式的地位。

可解释性与具体示例

团队精心准备了 7 个基准数据集,涵盖了生物物理与生理学,多个 GDL 模型与几个其他基于 KAN 的 GNN 架构将会同台竞技。总体结论是:KA-GNN(含 KA-GCN 与 KA-GAT)在准确率和计算效率上均优于传统 GCN/GAT 以及多种 SOTA 图学方法。

在 BBBP 数据集上,KA-GCN 与 KA-GAT 的 AUC 相较基线分别约提升了 7.95% 与 7.68%,并在 ClinTox、MUV 等更具挑战的数据集上也取得显著优势。进一步的消融研究还表明,基于傅里叶变换的 KANs 不仅提高了准确率,还在特征嵌入、消息传递和最终预测阶段也有所改进。

同时,傅里叶-KAN 版本在运行时间和参数规模上表现更优(全局三角基函数使得逼近更紧致、收敛更快),这对大规模分子筛选非常关键。

这些细节在文中都有表格作详细对比,所示结果无不显示着 KA-GNNs 在所有方案中均保持了强大的性能,突显了其对输入尺度变化的稳健性。

除了性能,设计者还重视可解释性:通过对 KA-GAT 的梯度类显著性(saliency)与掩码式 GNNExplainer 分析,模型能自动高亮对预测最重要的原子/键与子图。

图片

图 2:对某些分子的 KA-GAT 解释。

KA-GNN 的价值在三方面叠加:一是理论支撑,二是工程收益,三是可解释性。这让它既适合传统小分子性质预测,也能扩展到需要考虑更复杂相互作用的预测场景。在工业场景中,模型的效率与可解释性意味着能在更短时间内筛出更可靠的候选化合物,减少「盲投」化学合成的成本。

小结

在如此表现出色的情况下,KA-GNN 仍然可以进一步改进, 尽管显著性图和子图重要性分析已经证明 KA-GNN 能够有效识别关键的分子子结构等,但缺乏将相关傅里叶函数与物理或化学意义联系起来的深入特征重要性分析。

在目前的研究阶段,团队还未使用基于 KAN 的剪枝方法获得更「具有意义」的特征重要性分析结果。不过这终究不是某种数学上的把戏——它能让分子图表现更稳、速度更快、还能告诉你为什么。

未来的工作可以继续把 KAN 与更富物理先验的图构造结合,并在更大、更多模态的数据集上检验泛化性。别忘了:模型能告诉研究者「可能的化学信号」,但最终的药理学、毒理学验证仍要回到实验台——这是机器与人合作、而非机器独断的最好证明。

]]>

联系我们