动态列表

  • 刚刚!谷歌内部揭秘Genie 3:Sora后最强AI爆款,开启世界模型新时代
  • 硬核拆解!从GPT-2到gpt-oss,揭秘大模型进化关键密码
  • 黄仁勋子女逆袭上位!4万亿「皇储」成长史首曝:一个学烘培,一个开酒吧
  • GPT-5首次会推理,OpenAI联创曝AGI秘诀!超临界学习吞噬算力,2045金钱无用?
  • 400万人围观的分层推理模型,「分层架构」竟不起作用?性能提升另有隐情?
  • CoRL 2025|隐空间扩散世界模型LaDi-WM大幅提升机器人操作策略的成功率和跨场景泛化能力
  • SEAgent:开启从实战经验中自我进化的GUI智能体新纪元
  • OpenAI估值达5000亿美元;「原道」联手小岛秀夫,推《死亡搁浅》耳机;苹果手表将「大幅重新设计」
  • 奥特曼神秘晚宴讲话曝出!OpenAI的CEO或将是个AI,Chrome我也想买
  • 谷歌最新「0.27B」Gemma 3开源!身板小却猛如虎,开发者直呼救命稻草
  • 最惨就业季!CS学霸GPA 3.98,投2500份简历仅10次面试,AI吞噬入门级岗位
  • Yann LeCun最新纪录片首曝!传奇AI教父的双面人生,深度学习幕后40年
  • 大模型如何推理?斯坦福CS25重要一课,DeepMind首席科学家主讲
  • 当AI比我们更聪明:李飞飞和Hinton给出截然相反的生存指南
  • Sam Altman:AI存在泡沫;宇树机器人夺金,王兴兴:用遥控追求极致速度;蔡浩宇AI游戏上架,27.19元|极客早知道
  • 吞下17亿图片,Meta最强巨兽DINOv3开源!重新定义CV天花板
  • 打开高德的理由又多一条!全球首个「需求链智能调度」AI地图上线
  • 核心模型被曝蒸馏DeepSeek?前女友一纸控诉,曝出欧版OpenAI塌房真相!
  • 一句话搞定多任务出行,高德用空间智能重新定义地图
  • GPT-5、Grok 4、o3 Pro都零分,史上最难AI评测基准换它了
  • 谷歌开源Gemma 3 270M,性能超越Qwen 2.5同级模型
  • 追剧不断网,可能背后有个AI在加班,故障诊断准度破91.79%
  • Meta视觉基座DINOv3王者归来:自监督首次全面超越弱监督,商用开源
  • 多突触神经元模型问世,国内团队打造类脑计算新引擎,登上《自然·通讯》
  • Science封面:高效精准模拟构象变化,微软研究院用生成式AI重塑蛋白质功能研究
  • 扎克伯格看OpenAI直播挖人,北大校友孙之清加入Meta
  • AI 模特时代到来:字节x清华推出商用级视频换装模型DreamVVT,保真度显著领先SOTA
  • LeetCode刷够100小时,学会找人内推,OpenAI员工下场教你拿Offer
  • xAI元老离职干风投,传奇人物Babuschkin长文追忆与马斯克创业战友情
  • 链式思维是幻象吗?从数据分布视角重新审视大模型推理,马斯克回复,Grok破防
  • 李想:i8 反响不错,产品力没对手;库克暗示:苹果将推桌面机器人;中国日均消耗 30 万亿 Token,暴涨 300 倍
  • ChatGPT会让大脑退化?OpenAI高管用它救下自己「读写障碍」的女儿
  • 谷歌超级编码智能体正式上岗!125刀大会员,每天300任务任意跑
  • Meta华人天才毕树超「叛逃」预言:OpenAI未竟交互革命,暗藏万亿赛道
  • 美国CS就业梦碎!狂投5000家0 Offer,名校毕业00后被麦当劳惨拒
  • 3 分钟,我学会了像鸟儿一样飞行 | New Things
  • 从隐私计算迈向六大数据流通全栈技术,“隐语”开源社区升级
  • 7天,一场风暴!理想 i8「刮骨疗毒」,怒砍两个版本
  • 小订过万!打死不说价格的全新小鹏 P7,用颜值吊起了所有人的胃口!
  • 对话理想智驾负责人:撕掉「奶爸车」标签,智驶是理想的「新引擎」
  • 告别「偏科生」时代!36 万的坦克500,让对手从此无路可走
  • 万字长谈王小川:不再迎合他人做学霸,我要解自己的命题
  • 刚刚,全网最懂图文调研的智能体模型震撼上线,看完我直接卸了浏览器
  • ICCV 2025 | HVPL:分层视觉提示学习,让“视频实例分割”模型告别灾难性遗忘
  • 复旦&微软提出StableAvatar: 首个端到端“无限时长”音频驱动的人类视频生成新框架!
  • 千支队伍争锋!首届「启智杯」算法大赛圆满落幕,助推AI应用落地
  • 冗长响应缩减80%,DeepSeek GRPO获得颠覆性改进,微软GFPO问世
  • ICCV 2025 | HERMES:首个统一3D场景理解与生成的世界模型
  • 苹果 AI 下半场:年底问世的新 Siri,要彻底改变 iPhone 的交互
  • GNN+KAN,把三角函数当「激活」选项,山大、南洋理工让分子图更会读化学子结构
  • 港大联手月之暗面等开源OpenCUA:人人可造专属电脑智能体
  • 破解「长程智能体」RL训练难题,腾讯提出RLVMR框架,让7B模型「思考」比肩GPT-4o
  • AI独角兽498家,估值2.7万亿美元;《王者荣耀》连续三年成全球最吸金手游;抖音测试「快递」服务|极客早知道
  • 奥特曼公然叫板马斯克!重金杀入脑机接口,硅谷两大巨头彻底决裂
  • AI女友24h陪玩,全球800万人上头!这群AI创企靠百度开挂
  • 马斯克删除xAI「研究员」职位引爆网络!LeCun怒批:如此暴力将扼杀创新
  • OpenAI女CEO太狠了!智商148,GPT-5才是真印钞机
  • AI 和海外游戏发力,腾讯重回 7000 亿美金
  • 博士申请 | 休斯敦大学计算机系刘锦阳老师招收高性能计算/数据压缩方向博士生
  • Kimi K2背后的冷门绝招:海量语料“重写”如何榨干每个token?
  • ICML 2025 | 奖励模型还用人标?APEC用对抗模仿生成偏好,泛化能力直线上升
  • Attention Sink的起源找到了?清华×美团首次锁定MoE中的「超级专家」
  • 告别Transformer,重塑机器学习范式:上海交大首个「类人脑」大模型诞生
  • AI 上新|在 Edge 浏览器里,我第一次感受到了 AI 的「人味」
  • Agent狂欢下的冷思考:为什么说Data&AI数据基础设施,才是AI时代Infra新范式
  • AI顶会模式出了问题? 「不发表,就出局」的恶性循环,正在压垮整个AI学界
  • 研究者警告:强化学习暗藏「策略悬崖」危机,AI对齐的根本性挑战浮现
  • 多模态大脑建模技术迈入新纪元:Meta 10亿参数模型获Algonauts 2025大脑建模竞赛冠军
  • OpenAI没开源的gpt-oss基础模型,他去掉强化学习逆转出来了
  • 当人们怀念 GPT-4o,他们在「怀念」什么?
  • IEEE TPAMI 南洋理工&哈工大提出 MARCONet++ 攻克中文文本图像超分难题
  • 耶鲁&大连理工&南洋理工等提出MDCNeXt:X射线下的“动力电池缺陷精准检测”新范式
  • 6秒造一个「视频博主」,Pika让一切图片开口说话
  • 破解AI创企的「不可能三角」,解药不止「大模型」
  • OpenAI和奥特曼将投资一家脑机接口公司,直接与马斯克的Neuralink竞争
  • 大型语言模型稳定强化学习的新路径:几何平均策略优化GMPO
  • 传 DeepSeek-R2 8 月发布;微信测试信用借款功能;Perplexity 要 345 亿美元收购 Chrome
  • 一觉醒来,GitHub没了?CEO辞职,微软接管,开发者天塌了
  • AI全国榜单爆冷,全网吃瓜大狂欢!这家黑马竟靠DeepSeek杀进全国TOP 2
  • 物理学「AlphaGo时刻」?40年未竟之事被AI一举攻破,顶尖物理学家集体傻眼
  • 刚刚,商汤内部两万字复盘曝光:多模态通往AGI核心路线首次公开
  • 让强化学习快如闪电:FlashRL一条命令实现极速Rollout,已全部开源
  • 从物竞天择到智能进化,首篇自进化智能体综述的ASI之路
  • 破解效率与成本难题:华为UCM技术推动AI推理体验升级
  • SIGGRAPH上,英伟达发布物理AI开源新技术,更新RTX Pro产品线
  • 身家25亿刀,是四家公司创始人,这位伯克利教授还在给本科生上课
  • 商汤王晓刚:世界模型将加快AI从数字空间进入物理世界,「悟能」想做那个桥梁
  • 北京内推 | 度小满金融视觉和多模态团队招聘视觉多模态算法实习生
  • 实验室抢显卡抢破头?A800/H800骨折价来袭,超值返券助你轻松冲DDL!
  • 后训练轻量「小枝」强势出击!极限剪裁视觉token,推理加速154%
  • ICCV 2025 | LightSwitch:CMU提出材质引导的扩散模型,2分钟实现高质量三维场景重打光
  • TCSVT 2025 | 跨模态学习助力复杂工业过程异常检测:FmFormer框架与基准测试新突破
  • AI全面挖掘微蛋白价值:首次引入合成负样本训练,剔除92%噪声,摆脱保守依赖
  • 是「福尔摩斯」,也是「列文虎克」,智谱把OpenAI藏着掖着的视觉推理能力开源了
  • 东方理工·甬江论坛|新大学、新使命,邀你共启未来
  • LLM总是把简单任务复杂化,Karpathy无语:有些任务无需那么多思考
  • ICCV 2025 | 小红书AIGC团队提出图像和视频换脸新算法DynamicFace
  • 聚焦前沿,见证未来!「X·创新』产品SHOW圆满举办!
  • 刚刚,OpenAI拿下IOI金牌,仅次于前五名人类选手!参赛推理模型才夺得IMO金牌
  • Lumina-mGPT 2.0:自回归模型华丽复兴,媲美顶尖扩散模型
  • 雷军:小米YU7改名,被误会是丐版;传淘宝闪购周末峰值超美团;低价 MacBook 或年底亮相,599 美元
  • OpenAI开源霸权5天终结,百川M2一战夺冠!实测比GPT更懂中国医疗
  • 硅谷精英放弃生娃!MIT女记者揭秘:人类只是AI垫脚石,世界很快就毁灭
  • 41个榜单SOTA!智谱最新开源GLM-4.5V实测:看图猜地址、视频秒变代码
  • 2025全球大模型应用报告:红海混战「忠诚度」瓦解,用户脚踏4.7条船!
  • 昆仑万维发布新模型 SkyReels-A3,开启五天技术发布周
  • 世界机器人大会:笨拙的今天,与狂奔的明天
  • 「一只手有几根手指」,你的GPT-5答对了吗?
  • 4D空间智能:AI如何一步步「看懂」时空结构?一篇综述解析通往四维世界的五大层次
  • 智谱终于发布GLM-4.5技术报告,从预训练到后训练,细节大公开
  • 从捍卫者到引路人,上交&上海AI Lab提出LEGION:不仅是AI图像伪造克星,还能反哺生成模型进化?
  • ICCV 2025 | 机器人自主探索未知复杂空间?GLEAM破解主动探索建图的泛化难题
  • 脑子比不过AI,手也要沦陷了?这只灵巧手看得我有点慌
  • 第二届 “兴智杯” 全国人工智能创新应用大赛专题活动明天开启,技术解析 + 资源对接一站式平台重磅来袭!
  • 机器人上下文协议首次开源:阿里达摩院一口气放出具身智能「三大件」
  • Attention Sink产生的起点?清华&美团首次揭秘MoE LLM中的超级专家机制
  • 具身智能技术与应用论坛圆满举行,北京人形公布多项创新成果
  • ACL 2025 | 湖南大学、腾讯生命科学实验室等提出蛋白互作预测新方法,让LLM学会解读蛋白质网络
  • 宇树、银河通用都在用:英伟达「物理AI」技术亮相世界机器人大会
  • CVPR 2025 | DPC:用于微调视觉-语言模型的双提示协作
  • ICCV 2025 | 终结灾难性遗忘!南大提出外部知识注入机制,刷新CLIP持续学习SOTA
  • 超越样本级RL!人大×快手提出ARPO:熵驱动Agent探索,多轮推理性能飙升
  • 北京/上海内推 | 盛大集团AI创新中心招聘大模型/Agent方向算法实习生
  • 毒液抗菌搭配深度学习,千万级数据组中筛得386条备选,91.4%体外验证成功

简单即强大:全新生成模型「离散分布网络DDN」是如何做到原理简单,性质独特?

图片

本文作者杨磊,目前在大模型初创公司阶跃星辰担任后训练算法工程师,其研究领域包括生成模型和语言模型后训练。在这之前,他曾在旷视科技担任了六年的计算机视觉算法工程师,从事三维视觉、数据合成等方向。他于 2018 年本科毕业于北京化工大学。

当前,主流的基础生成模型大概有五大类,分别是 :Energy-Based Models (Diffusion)、GAN、Autoregressive、VAE 和 Flow-Based Models。

本项工作提出了一种全新的生成模型:离散分布网络(Discrete Distribution Networks),简称 DDN。相关论文已发表于 ICLR 2025。

DDN 采用一种简洁且独特的机制来建模目标分布:

1.在单次前向传播中,DDN 会同时生成 K 个输出(而非单一输出)。

2.这些输出共同构成一个包含 K 个等权重(概率均为 1/K)样本点的离散分布,这也是「离散分布网络」名称的由来。

3.训练目标是通过优化样本点的位置,使网络输出的离散分布尽可能逼近训练数据的真实分布。

每一类生成模型都有其独特的性质,DDN 也不例外。本文将重点介绍 DDN 的三个特性:

  • 零样本条件生成 (Zero-Shot Conditional Generation, ZSCG)

  • 树状结构的一维离散潜变量 (Tree-Structured 1D Discrete Latent)

  • 完全的端到端可微分 (Fully End-to-End Differentiable)

图片
  • 论文标题: 《Discrete Distribution Networks》

  • 论文链接: https://arxiv.org/abs/2401.00036

  • 项目链接: https://discrete-distribution-networks.github.io/

  • 代码地址: https://github.com/DIYer22/discrete_distribution_networks

离散分布网络原理

图片

                图1: DDN 的重建过程示意图

首先,借助上图所示的 DDN 重建流程作为切入点来一窥其原理。与 diffusion 和 GAN 不同,它们无法重建数据,DDN 能像 VAE 一样具有数据重建能力:先将数据映射为 latent ,再由 latent 生成与原始图像高度相似的重建图像。

上图展示了 DDN 重建 target 并获得其 latent 的过程。一般 DDN 内部包含多个层级结构,其层数为 L,示意图里 L=3。但先让我们把目光集中在最左侧的第一层。

离散分布: 正如上文所言,DDN 的核心思想在于让网络同时生成 K 个输出,从而表示「网络输出了一个离散分布」。因此每一层 DDN 都有 K 个 outputs,即一次性输出 K 张不同的图像,示意图中 K=3。每个 output 都代表了这个离散分布中的一个样本点,每个样本点的概率质量相等,均为 1/K。

层次化生成: 最终目标是让这个离散分布 (K 个 outputs),和目标分布(训练集)越接近越好,显然,单靠第一层的 K 个 outputs 无法清晰地刻画整个 MNIST 数据集。第一层获得的 K 张图像更像是将 MNIST 聚为 K 类后得到的平均图像。因此,我们引入「层次化生成」设计以获得更加清晰的图像。

在第一层,橙色 Sampler 根据 图片 距离从 K 个 outputs 中选出和重建 target 最相似的一张 output。再把被选中的 output 图输入回网络,作为第二层 DDN 的 condition。这样,第二层 DDN 就会基于 condition(被选中的图)生成新的 K 张和 target 更相似的 outputs。

接着,从第二层的 outputs 中继续选择出和 target 最相似的一张作为第三层的 condition,并重复上述过程。随着层数增加,生成的图像和 target 会越来越相似,最终完成对 target 的重建。

Latent: 这一路选下来,每一层被选中 output 的 index 就组成了 target 的 latent(图中绿色部分「3-1-2」)。因此 latent 是一个长度为 L, 取值范围 [1,K] 的整数数组。

训练: DDN 的训练过程和重建过程一样,只需额外在每一层中,对选中的 output 和 target 计算 图片 loss 即可。总的 loss 就是对每一层 图片 loss 取平均。

生成: 在生成阶段,将 Sampler 替换为 random choice 即可:每一层从 K 个 outputs 中随机抽取一个作为下一层的 condition。由于生成空间包含 图片 个样本点,复杂度随 K 和 L 指数级增长,随机采样的 latent 几乎不可能与训练集中的 latent 重合,因此可视为模型生成的新样本。

网络结构

将「重建过程示意图」进一步细化,就有下图 (a) 的网络结构图:

图片

      DDN 网络结构示意图和支持的两种网络结构形式

在图 (a) 中,把生成相关的设计整合为 Discrete Distribution Layer (DDL), 把仅提供基础计算的模块封装为了 NN Block,并重点展示训练时 DDL 内部的数据流。主要关注以下几点:

  • 第一层 DDN 的输入为 zero tensor,不需要任何 condition;

  • DDL 内部通过 K 个 conv1x1 来同时生成 K 个 outputs;

  • 然后,Guided Sampler 从这些 outputs 中选出和 training image  图片  距离最小的 output;

  • 被选中的 output 图像承担两项任务:[1]. concat 回 feature 中,作为下一层 DDL 的 condition;[2]. 和 training image 计算 图片 loss。

右侧的 (b)、 (c) 两图分别展示了 DDN 支持的两种网络结构形式:

  • (b)Single Shot Generator: 类似 GAN 中生成器的 decoder 结构,但需要在网络中插入足够数量的 DDL 以确保生成空间 图片 足够大。

  • (c)Recurrence Iteration: 各层 DDL 共享相同参数,类似 diffusion 模型,需要做多次 forward 才能生成样本。

出于计算效率考虑,DDN 默认采用具有 coarse-to-fine 特性的 single shot generator 形式。

损失函数

DDN 是由 L 层 DDL 组成,以第 图片层 DDL 图片 为例,输入上一层选中的样本 图片,生成 K 个新的样本 图片,并从中找出和当前训练样本 x 最相似的样本 图片 及其 index图片。最后,只在选中的样本 图片 上计算这一层 DDL 的 loss图片。公式及说明如下:

图片

其中,图片代表第一层 DDL 的输入为 zero tensor。DDN 的总 loss 就是每一层的 loss图片 取平均。

此外,本文还提出了 Split-and-Prune 优化算法来使得训练时每个节点被 GT 匹配上的概率均匀,都是 1/K。

下图展示了 DDN 做二维概率密度估计的优化过程:

图片

      左:生成样本集;右:概率密度GT

实验与特性展示

随机采样效果展示

图片

      在人脸数据集上的随机采样效果

更通用的零样本条件生成

先描述一下「零样本条件生成」(Zero-Shot Conditional Generation, ZSCG)这个任务:

  • 首先,Unconditional 地训练一个生成模型,即训练阶段,模型只见过图像,没有见过任何 condition 信号。

  • 在生成阶段,用户会提供 condition,比如 text prompt、低分辨率图像、黑白图像。

  • 任务目标:让已经 unconditional 训练好的生成模型能根据 condition 生成符合对应 condition 的图像。

  • 因为在训练阶段,模型没见过任何的 condition 信号,所以叫 Zero-Shot Conditional Generation。

图片

用 Unconditional DDN 做零样本条件生成效果:DDN 能在不需要梯度的情况下,使不同模态的 Condition (比如 text prompt 加 CLIP) 来引导 Unconditional trained DDN 做条件生成。黄色框圈起来部分就是用于参考的 GT。SR 代表超分辨率、ST 代表 Style Transfer。

如上图所示,DDN 支持丰富的零样本条件生成任务,其做法和图 1 中的 DDN 重建过程几乎一样。

具体而言,只需把图 1 中的 target 替换为对应的 condition,并且,把采样逻辑调整为从每一层的多个 outputs 中选出最符合当前 condition 的那一个 output 作为当前层的输出。这样随着层数的增加,生成的 output 越来越符合 condition。整个过程中不需要计算任何梯度,仅靠一个黑盒判别模型就能引导网络做零样本条件生成。DDN 是第一个支持如此特性的生成模型。

换为更专业的术语描述便是:

> DDN 是首个支持用纯粹判别模型引导采样过程的生成模型;

> 某种意义上促进了生成模型和判别模型的大一统。

这也意味着用户能够通过 DDN 高效地对整个分布空间进行筛选和操作。这个性质非常有趣,可玩性很高,个人感觉「零样本条件生成」将会得到广泛的应用。

Conditional Training

训练 conditional DDN 非常简单,只需要把 condition 或者 condition 的特征直接输入网络中,网络便自动学会了 P (X|Y)。

此外,conditional DDN 也可以和 ZSCG 结合以增强生成过程的可控性,下图的第四 / 五列就展示了以其它图像为 ZSCG 引导的情况下 conditional DDN 的生成效果。

图片

Conditional-DDNs 做上色和边缘转 RGB 任务。第四、五列展示了以其它图像为引导的情况下,零样本条件生成的效果,生成的图像会在保证符合 condition 的情况下尽可能靠近 guided 图像的色调。

端到端可微分

DDN 生成的样本对产生该样本的计算图完全可微,使用标准链式法则就能对所有参数做端到端优化。这种梯度全链路畅通的性质,体现在了两个方面:

1.DDN 有个一脉相承的主干 feature,梯度能沿着主干 feature 高效反传。而 diffusion 在传递梯度时,需多次将梯度转换到带噪声的样本空间进行反传。

2.DDN 的采样过程不会阻断梯度,意味着网络中间生成的 outputs 也是完全可微的,不需要近似操作,也不会引入噪声。

理论上,在利用判别模型做 fine-tuning 的场景或着强化学习任务中,使用 DDN 作为生成模型能更高效地 fine-tuning。

独特的一维离散 latent

DDN 天然具有一维的离散 latent。由于每一层 outputs 都 condition on 前面所有的 results,所以其 latent space 是一个树状结构。树的度为 K,层数为 L,每一个叶子节点都对应一个 DDN 的采样结果。

图片

      DDN 的 latent 空间为树状结构,绿色路径展示了图 1 中的 target 所对应的 latent

DDN 具有较强的数据压缩能力(有损压缩)。DDN 的 latent 是一列整数 (list of ints),属于高度压缩的离散表征。一个 DDN latent 有 图片 个 bits 的信息量,以人脸图像实验默认的 K=512, L=128 为例,一个样本可以被压缩到 1152 bits。

Latent 可视化

为了可视化 latent 的结构,我们在 MNIST 上训练了一个 output level 层数 L=3,每一层 output nodes 数目 K=8 的 DDN,并以递归九宫格的形式来展示其 latent 的树形结构。九宫格的中心格子就是 condition,即上一层被采样到的 output,相邻的 8 个格子都代表基于中心格子为 condition 生成的 8 个新 outputs。

图片

      Hierarchical Generation Visualization of DDN

未来可能的研究方向

  • 通过调参工作、探索实验、理论分析以改进 DDN 自身,Scaling up 到 ImageNet 级别,打造出能实际使用、以零样本条件生成为特色的生成模型。

  • 把 DDN 应用在生成空间不大的领域,例如图像上色、图像去噪。又或者 Robot Learning 领域的 Diffusion Policy。

  • 把 DDN 应用在非生成类任务上,比如 DDN 天然支持无监督聚类,或者将其特殊的 latent 应用在数据压缩、相似性检索等领域。

  • 用 DDN 的设计思想来改进现有生成模型,或者和其它生成模型相结合,做到优势互补。

  • 将 DDN 应用在 LLM 领域,做序列建模任务。

]]>

联系我们