动态列表

  • 一夜刷屏!27岁姚顺雨离职OpenAI,清华姚班天才转型做产品经理?
  • 王小川押注下个十年:为人类造医生,为生命建模型|新智元十周年峰会
  • 一刀砍掉90%训练成本!Qwen3-Next用1/10算力练成「长文推理利器」
  • AI意识「觉醒」!图灵得主Bengio重磅发声:AI正接近人类意识临界点
  • 扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
  • 如何为LLM智能体编写工具?Anthropic官方教程来了
  • 腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破
  • Adam的Update RMS为何总是0.2?噪声模拟到理论近似全讲透
  • KDD 2025最佳论文亚军:参数不同还能共训?异构知识迁移框架HtFLlib全面开源
  • 「做笔记」的RAG来了!告别噪声与骨牌效应,EviNote-RAG稳住长链推理
  • 北京/上海内推 | 小红书智能审核算法团队招聘NLP/多模态内容理解算法工程师/实习生
  • 我苦寻的「库乐队」,叫 MiniMax Music 1.5
  • Science Advances | AI for Earth:聆听海洋的「脉搏」,新一代AI大模型精准预测十年气候脉动
  • 外滩大会嘉宾锐评AGI即将“撞墙”,正在向数字与物理世界进化
  • 港科大 X MiniMax:高质量数据、小模型挑战复杂网络搜索难题
  • 为了网罗 AI 创新者,上海搞了场万人科创大赛
  • 蚂蚁集团数字蚂力首批专家级“AI数字员工团队”亮相外滩大会
  • “IIFAA数字卡包”上线支付宝:目前已支持多类身份申领
  • 蚂蚁集团加码AGI等青年人才培育,2025蚂蚁InTech奖在外滩大会揭晓
  • 重塑药物研发,哈佛医学院等开源全新AI模型,用「图神经网络」破解疾病驱动因素多元难题
  • 全球最懂智能体的创业者齐聚外滩大会,未来三年怎么做聊透了
  • 马上上岛|云栖大会「新世代 AI 创想岛」即将揭幕
  • ICRA 2025 | TANGO:机器人告别3D地图,仅靠RGB摄像头实现零样本长距离导航
  • 挑战主流认知!蚂蚁、人大在2025外滩大会发布行业首个原生MoE扩散语言模型
  • 姚顺雨离职OpenAI,「亿元入职腾讯」传闻引爆AI圈,鹅厂辟谣了
  • 全新MoE架构!阿里开源Qwen3-Next,训练成本直降9成
  • 告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式
  • 西贝贾国龙称一定起诉罗永浩;支付宝推出「AI 付」服务;iPhone 17 京东、天猫预订量比上代大增|极客早知道
  • 刚刚,ChatGPT支持MCP了!一句Prompt即可全自动化
  • 百度CTO王海峰:AGI曙光已现,Scaling Law仍有效|新智元十周年峰会
  • 通用Agent是伪命题?昆仑万维方汉现场拆解:垂直推理才是胜负手|新智元十年峰会
  • 文心X1.1三大能力狂飙,海内外实测还挺惊艳!
  • 超越90%城市规划师!清华、MIT等提出人机协作新范式 | Nature子刊
  • 慕尼黑车展,当冷静遇上冷静
  • 博士申请 | 新加坡国立大学计算机系卞亚涛老师招收2026 Fall人工智能全奖博士/博后
  • 别再狂刷CoT了!港科广DIGAI Lab发布隐式推理全景综述,静默思考开启新范式
  • 继首创“AI打赏”服务之后,支付宝再推国内首个“AI付”
  • 蚂蚁百宝箱新品Tbox超级智能体亮相外滩大会,5分钟即可完成专业教学素材
  • 量子宇宙模拟竞赛开启:量子计算机可以模拟并阐明复杂物理现象
  • 3000亿美元OpenAI大单,让世界首富位置换人了
  • 攻克大模型「表格盲区」!ST-Raptor框架发布,实现复杂半结构化表格的精准理解与信息抽取
  • 港大马毅外滩大会演讲:人工智能应从“黑箱”走向“白箱”
  • 兼顾准确率与可解释性,DeepSEA实现抗生素耐药蛋白注释范式转变
  • 交互扩展时代来临:创智复旦字节重磅发布AgentGym-RL,昇腾加持,开创智能体训练新范式
  • RewardDance:字节跳动提出视觉生成奖励扩展新范式,破解“奖励劫持”难题
  • 刚刚,Thinking Machines Lab首次发长文,揭开LLM推理不确定性真相
  • 英伟达的AI已经开始接管整个项目了?SATLUTION自主进化代码库登顶SAT竞赛
  • 大模型智能体不止能写代码,还能被训练成白帽黑客
  • 高德扫街榜,能不能做成中国的「Google Map」?
  • 开启MPV家庭新时代,魏牌高山7正式启动预售
  • ACL最佳论文幕后的北大人!北大张铭带出顶会常胜军和百亿CEO天团|新智元十周年峰会
  • 刚刚,这款Agent浏览器力压OpenAI,72%成功率全球第一!还能免费用
  • =COPILOT()函数横空出世!AI自动写公式效率起飞,网友:让Excel再次伟大
  • 当智能醒于物理世界,英伟达副总裁: 下一个十年属于物理AI!|新智元十周年峰会
  • 刚刚,英伟达祭出下一代GPU!狂飙百万token巨兽,投1亿爆赚50亿
  • 00后挑大梁!近20国选手激战外滩大会,AI科创赛三赛道冠军诞生
  • CoRL 2025 | 港大InfoBodied AI团队首发具身表征新范式,构建任务自适应的感知框架
  • 英伟达下一代GPU登场,Rubin CPX一次推理数百万Token,网友:这是头野兽
  • 谷歌AI新里程碑:一个能「做研究」的系统诞生了,用LLM+树搜索编写专家级软件
  • 爱诗科技完成6000万美元B轮融资,阿里巴巴领投,达晨财智、深创投、北京市AI基金、巨人网络、Antler等跟投
  • 当人工智能「看见」量子世界:AI如何改变对复杂量子系统的认知,南洋理工、上交等发布量子系统学习综述
  • DeepSeek、Gemini都不行?AgenTracer锁定多智能体“背锅侠”,8B小模型反超闭源巨模
  • 北京内推 | AMD北京AI算法团队招聘模型量化/剪枝算法实习生(可远程)
  • SFT真不如RL?MIT团队抛出“RL的剃刀”,砍掉遗忘直通终身学习
  • 院士领衔!从智能算网到司法AI:顶尖学者直播解读AI与工程前沿趋势
  • AI应用元年,这场标杆赛事见证了中国创新速度与野心
  • AI胡说八道这事,终于有人管了?
  • 人人都能炼专属Agent,上海交大开源端侧Agent全栈工具链,真实场景性能超GPT-5!
  • TPAMI 2025 | H2OT:分层沙漏型Tokenizer,重塑高效视频姿态Transformer
  • 史上最贵「打工皇帝」!马斯克解锁1万亿美金工资,拢共分几步?
  • 500 块的「电子宠物」,治好了我的「路怒症」|New Things
  • 苹果发布会:耳机测心率、手表听音乐、iPhone Air超级薄
  • 5999 元起,苹果发布eSIM、超薄 iPhone;王腾再辟谣离职原因谣言;反恶性补贴,主要外卖平台被约谈|极客早知道
  • 不到10天,国产「香蕉」突袭!一次7图逼真还原,合成大法惊呆歪果仁
  • 再也不怕面瘫脸!YouTube黑科技:AI帮你「永久微笑」,连僵尸都咧嘴笑
  • OpenAI真正王牌,不是Ilya!刚刚,奥特曼罕见致谢这两人
  • 缔造OpenAI的秘密,竟只有一个词!新智元十年峰会圆桌,七位大咖激辩
  • Hinton预言失灵?掌握AI技能涨薪23%,比读硕士更赚钱
  • 最薄 iPhone 登场,eSIM 正式落地|苹果秋季发布会新品回顾
  • 文心新出的推理大模型,给了我们信心
  • SFT远不如RL?永不过时的剃刀原则打开「终身学习」大模型训练的大门
  • 从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准
  • 击败多个行业巨头,优必选自研人形机器人最强大脑 Thinker 斩获全球四项第一
  • 字节跳动发布 Seedream 4.0 图像创作模型,豆包、即梦可免费体验
  • 从科幻到产业元年 | 「脑机接口」系统综述发布:全景解析理论、技术、挑战、趋势
  • 硅谷也996实锤了?AI的火,烧掉了硅谷的周末
  • DPad: 扩散大语言模型的中庸之道,杜克大学陈怡然团队免训推理加速61倍
  • Altman亲自发博客点赞,这两大杰出人才是谁?
  • 自变量机器人完成近 10 亿元 A+ 轮融资,多元资本押注共同布局具身智能未来
  • 报名启动!西湖大学云谷青年学者论坛·人工智能分论坛诚邀全球英才
  • 不止综述!多模态大模型持续学习全链路:Benchmark、方法与Codebase一网打尽
  • ICML 2025 | 别再只拼CoT了!不完备信息下的主动推理,LLM普遍掉线
  • 科研实习 | 北京大学计算机学院潘亮铭老师课题组招收NLP/大模型方向科研实习生
  • 时空壶发布 W4:用「硬核」技术,打赢一场 AI 翻译的「标准」之战
  • Science | 西奈山伊坎医学院新AI算法为1600种变异定量「风险」,解析疾病外显率难题
  • TPAMI 2025 | IGEV++:迭代多范围几何编码,刷新立体匹配技术新高度
  • 原来你是这样的外滩大会!
  • 小米通报王腾因泄密被辞退,本人发微博回应;传 IPO 估值 500 亿,宇树回应 ;辛顿自曝被女友用 AI 分手 | 极客早知道
  • Hinton自曝:前女友提分手,用ChatGPT列出自己「七宗罪」
  • 从「会说」迈向「会做」,LLM下半场:Agentic强化学习范式综述
  • 字节Seedream 4.0将全量开放!抢先评测来了,我们摸索出AI生图20种「邪修」玩法
  • 全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
  • 扎克伯格的豪赌初见成效?Meta新方法让LLM长上下文处理提速30倍
  • 具身VLA后训练:TeleAI提出潜空间引导的VLA跨本体泛化方法
  • 上海AI Lab重磅综述:AI实现自主科学发现时代已经到来
  • 6 个月估值暴涨 5 倍突破 100 亿美元,三个「00后」逼急 Scale AI
  • 深圳内推 | 腾讯音乐天琴实验室招聘音乐生成算法研究员(社招/校招)
  • 给RL装上“防抖器”!GRPO稳化版来了:更高熵、更低KL、更稳更新
  • 导师放养真的会毁掉一个人……
  • Focal Loss也能无监督?北大×港中文团队用“双重不确定性优化”提升鲁棒3D感知
  • 上汽通用五菱与华为深化合作,推出首款车型宝骏华境S
  • IEEE TPAMI | M²Diffuser: 让机器人学会“脑补”,在复杂3D场景中实现精准移动操作
  • 国行版苹果 AI 推迟至年底上线;视频平台广告被曝「偷时间」;美国计划限制进口中国无人机和重型载具 | 极客早知道|极客早知道
  • 16岁创业,22岁做成百亿独角兽!3位高中同学帮大厂训AI年入1亿美金
  • 《2025新智元ASI前沿趋势报告》全文
  • 一图看透全球大模型!新智元十周年钜献,2025 ASI前沿趋势报告37页首发
  • 苹果端侧AI两连发!模型体积减半、首字延迟降85倍,iPhone离线秒用
  • Claude不让我们用!国产平替能顶上吗?
  • SceneSplat: 基于3DGS的场景理解和视觉语言预训练,让3D高斯「听懂人话」的一跃
  • 慕尼黑车展 2025前瞻:中国队组团出海,BBA 走向「新」时代
  • 国内外AI大厂重押,初创梭哈,谁能凭「记忆」成为下一个「DeepSeek」?
  • 斯坦福:优化器「诸神之战」?AdamW 凭「稳定」胜出
  • 字节跳动Seed推出「机器人大脑」Robix:让机器人学会思考、规划与灵活互动
  • 浙大提出SSGaussian:注入语义与结构灵魂的3D风格迁移,让高斯溅射场景化身艺术品
  • 苹果 iPhone 17 系列规格已全被曝光;Anthropic 全面封杀中国公司接入;今夜将迎来「血月」月全食|极客早知道
  • OpenAI重组GPT-5「灵魂」团队!亚裔女负责人遭调离,罕见自曝AI幻觉祸首
  • 设计师大解放!清华发布「建筑平面图」自动生成模型 | ACL'25
  • 谁不用谁亏!Karpathy吹爆GPT-5:10分钟编码完胜Claude一小时,奥特曼秒回感谢
  • 震撼实锤!清华姚班校友揭「1.4×加速」陷阱:AI优化器为何名不符实?
  • Anthropic被作家告了,违规下载700万本书,15亿美元和解了
  • 英伟达的局:狂撒15亿美元,从Lambda那租到了搭载自家AI芯片的GPU服务器
  • OpenAI罕见发论文:我们找到了AI幻觉的罪魁祸首
  • 00后以1.1亿美金「掀桌」,硅谷AI将书写影视新传奇 终结制片旧时代
  • 任意骨骼系统的模型都能驱动?AnimaX提出基于世界模型的3D动画生成新范式
  • ICCV 2025 | MOSEv2 全新亮相,第七届 LSVOS 挑战赛正式开启!
  • IEEE TPAMI 2025| PointGST:参数量仅0.67%,精度首破99%,三维点云处理迎来谱域新范式!
  • 华为新问界 M7,6 小时订单破 13 万;等 eSIM,iPhone17 Air 首发无国行;特斯拉拟给马斯克 1 万亿薪酬

刚刚,谷歌发布71页AI科研报告!6大领域全面超越专家,几小时顶几个月



  新智元报道  

编辑:倾倾
【新智元导读】谷歌最新71页论文震惊科研界:AI不止能写代码,还能像科学家一样提出新方法、跑实验,甚至在六大领域全面超越专家!过去要花几个月的探索,如今几小时就能完成,科研节奏正在被AI改写。

一图看透全球大模型!新智元十周年钜献,2025 ASI前沿趋势报告37页首发

在最新一篇长达71页的论文里,谷歌给科研界丢下了一颗重磅炸弹。

过去一年,DeepMind的FunSearch已经展示了AI在数学发现中的潜力,MIT等团队也提出了AI co-scientist的概念。

但与这些探索相比,谷歌这次的系统走得更远:它不仅能提出新方法、验证实验结果,还在多个领域超越了顶尖专家。

论文地址:https://arxiv.org/abs/2509.06503

和传统代码只追求正确性不同,实证软件的目标只有一个:让科研任务的指标分数尽可能高。

这意味着,AI已经开始介入科学研究的最核心环节——假设验证与方法创新。


不止是写代码,而是科研「实证软件」

在科研中,最耗时的环节并不是提出想法,而是如何验证。

科学家们往往要为一个问题编写和调试大量实验代码,尝试几十甚至上百种模型和参数组合,这个过程动辄数月。

谷歌的新系统把这一环节彻底加速,他们提出了一个概念:实证软件。

与常规软件通常只以功能正确性作为评判标准不同,实证软件的首要目标是最大化预设的质量评分。

也就是说,科研问题被重新抽象为一种可计分任务(scorable task)。

任务中包含清晰的问题描述、衡量优劣的指标和数据集,AI要做的,就是直接朝着分数最高的方向不断优化。

在这一机制下,AI的角色已经不再是一个写代码的小助手,而更像是一个高速运转的实验员。

它会先生成研究思路并写出可执行的代码,然后在沙箱环境中运行,利用树搜索的方法筛选出值得深入的候选方案,再让大语言模型对代码进行反复的改写和优化。

整个过程循环往复,直到找到最优解。

AI科研系统的工作流程:科研问题被转化为可计分任务,经由大语言模型生成代码,并通过树搜索反复迭代优化,最终获得最佳方案。

研究员也强调:

其输出作为代码化的解决方案,可验证、可解释且可复现。

换句话说,这不是简单的一段程序,而是真正符合科研标准的成果。

六大领域的硬核成绩单

谷歌这套系统真正惊艳的地方,是它在六个完全不同的科学领域里,都拿出了堪比专家的成果。

基因组学:比专家强14%

在单细胞RNA测序(scRNA-seq)数据的批次整合问题上,谷歌的系统展现了真正的科研创新力。

这类任务的难点在于,不同实验批次之间会产生复杂的技术偏差,如何在消除这些偏差的同时保留真实的生物学信号,一直是领域里的核心挑战。

研究人员并没有只让系统从零开始,而是把现有方法的文字说明直接输入给它。

比如BBKNN,这是一种常见的批次校正方法,核心思路是:在每个批次内部为细胞寻找最近邻居,再把这些邻居集合合并,得到一个批次校正后的整体图。

BBKNN 的方法描述示例。研究人员将其输入系统,AI 在此基础上进行改写和优化

在这样的基础上,AI能够生成新的变体并进行组合。

最终,它把BBKNN和另一种方法ComBat拼接在一起,得到一个完全新颖的解法。

结果显示,在OpenProblems V2.0.0的综合指标上,比最佳人工方法提升了14%。

在单细胞RNA测序批次整合任务上,AI系统自动组合方法,整体得分超过现有专家工具

公共健康:超过CDC官方模型

美国在疫情期间,CDC的CovidHub Ensemble被视为预测住院人数的「黄金标准」。

而谷歌的系统自动生成的14个模型,集体表现超过了官方Ensemble。

AI在新冠住院预测任务中的表现,整体优于CDC官方的CovidHub Ensemble

地理遥感:分割精度破 0.80

在高分辨率遥感图像分割任务中,系统生成的三种模型全部超过现有方法,分割精度(mIoU)突破0.80。

更重要的是,它利用U-Net、SegFormer等架构,并结合图像增强手段,说明它不仅在「复制」,也在「改造和优化」。

AI系统生成的分割结果(下排),与人工标注结果(中排)高度接近,明显优于传统模型

神经科学:全脑7万神经元预测

在Zebrafish全脑神经活动预测中,AI系统不仅打败了所有现有基线,还设计出能结合生物物理模拟器的混合模型。

在斑马鱼全脑神经活动预测中,AI系统生成的模型(蓝色)整体误差更低,全面超越现有基线方法(红色),其中TS-Jaxley更是将生物物理模拟器融入预测,提升了可解释性

数学:难积分迎刃而解

数学问题一向是最能考验算法极限的地方。

谷歌的系统被拿来挑战19个异常棘手的积分任务,结果出乎意料:标准数值方法几乎全军覆没,而AI系统却成功算出了其中17个。

数值积分任务的部分示例。谷歌系统在19个测试积分中成功求解了17个,而标准数值方法未能给出结果。

这说明,它并不只是停留在表面,而是真正学会了如何在复杂数学场景中找到突破口。

对科研人员来说,这意味着在长期困扰的数值计算上,AI已经能给出可用的答案。

时间序列:零起步构建通用预测库

在通用时间序列预测的GIFT-Eval基准上,谷歌的系统完成了一件几乎不可能的事:

从零开始,只靠一段代码不断爬坡优化,硬是炼成了一个能覆盖28个数据集、跨越7个领域、适配从秒到年的10种频率的通用预测库。

这意味着,AI不仅能解具体问题,还能自己总结出一套通用方法——科研里最难啃的「跨领域泛化」,它也啃下来了。


科研范式的转折:AI能创新,也能跨界

如果说前面的六个案例只是成绩单,那么它们背后真正震撼的是:AI已经不满足于模仿,而是在科研中展现出了创新能力与跨学科的通用性。

在基因组学任务中,它能够自动把两个不同的专家方法组合起来,得到比人类更优的解;

在神经科学任务里,它甚至首次把生物物理模拟器和深度模型拼接,开辟出一种全新的混合思路。

类似的尝试在学界和业界已有先例:比如DeepResearchGym提供了评测框架,OpenProblems.bio社区建立了scRNA-seq的公开基准。

但谷歌的系统首次在这些基准上全面跑通pipeline,给出了可量化、可复现的专家级结果。

这种创新并不是单点突破,而是跨学科的普遍现象。

从基因组学到公共健康,从遥感影像到时间序列预测,系统都能快速适配,找到新的路径。

这些基准的多样性使我们能够综合评估其在零样本泛化、高维信号处理、不确定性量化、复杂数据语义解释和系统层面建模等方面的能力。

过去科学家依靠反复试验推进,如今AI系统也能以相同方式进行大规模试错,而且速度提升数百倍——把几个月的探索压缩到几小时。

这意味着科研节奏可能迎来真正的「指数级加速」。


当AI走进实验室,人类该做什么?

AI已经能在多个前沿领域生成新方法、验证结果、超越专家,人类科学家的角色也正在被重新定义。

在这套系统里,AI负责的是不知疲倦的实验与探索:

成千上万种方案的尝试、优化和筛选,本来需要几个月甚至更久,如今压缩到几小时或几天。

我们的系统能够快速生成专家级别的解决方案,将一组想法的探索时间从数月缩短到数小时或数天。

而科学家的职责,正逐渐转向提出方向、判断价值、定义优先级。

AI可以在技术路径上无限拓展,但科研问题本身的意义、背后的社会价值,仍然需要人类去设定和把握。

这意味着,科研分工正在走向一种新的格局:

AI或许会成为高效实验员和方法发明者,人类则站在更高的维度上进行选择与决策。

这意味着,谷歌的系统不再只是一个「研究工具」的实验,而是迈向了和FunSearch、AI co-scientist等项目同一赛道的下一步——

从单点突破走向跨领域的科研合作者。

值得一提的是,谷歌已经将这套系统产出的最佳方案全部开源,并提供交互界面让研究人员追踪整个搜索与突破过程。

这种开放姿态,意味着科研界可以直接在真实任务里验证、扩展这些AI生成解法。

参考资料:
https://arxiv.org/abs/2509.06503
https://research.google/blog/accelerating-scientific-discovery-with-ai-powered-empirical-software/


<br>


    <a class="media_tool_meta meta_primary" href="http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&amp;mid=2652627189&amp;idx=3&amp;sn=ed48686d6788ef9da6bb4f0ae52bc793&amp;chksm=f0c471163cbca239673641e6068f01a673898cbb09d5b4bddd50886d1ac47481a02d4177b931&amp;scene=0#rd"  target="_blank">文章原文</a>
    <br>




<img alt="" class="" height="1px" src="https://images.weserv.nl/?url=http://www.jintiankansha.me/rss_static/83671/Vnu0jlaSrx&amp;maxage=1y"  width="1px"></div></div></body></html>

联系我们