动态列表

  • 刚刚,谷歌发布71页AI科研报告!6大领域全面超越专家,几小时顶几个月
  • 一夜刷屏!27岁姚顺雨离职OpenAI,清华姚班天才转型做产品经理?
  • 王小川押注下个十年:为人类造医生,为生命建模型|新智元十周年峰会
  • 一刀砍掉90%训练成本!Qwen3-Next用1/10算力练成「长文推理利器」
  • AI意识「觉醒」!图灵得主Bengio重磅发声:AI正接近人类意识临界点
  • 扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
  • 如何为LLM智能体编写工具?Anthropic官方教程来了
  • 腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破
  • KDD 2025最佳论文亚军:参数不同还能共训?异构知识迁移框架HtFLlib全面开源
  • 「做笔记」的RAG来了!告别噪声与骨牌效应,EviNote-RAG稳住长链推理
  • 北京/上海内推 | 小红书智能审核算法团队招聘NLP/多模态内容理解算法工程师/实习生
  • 我苦寻的「库乐队」,叫 MiniMax Music 1.5
  • Science Advances | AI for Earth:聆听海洋的「脉搏」,新一代AI大模型精准预测十年气候脉动
  • 外滩大会嘉宾锐评AGI即将“撞墙”,正在向数字与物理世界进化
  • 港科大 X MiniMax:高质量数据、小模型挑战复杂网络搜索难题
  • 为了网罗 AI 创新者,上海搞了场万人科创大赛
  • 蚂蚁集团数字蚂力首批专家级“AI数字员工团队”亮相外滩大会
  • “IIFAA数字卡包”上线支付宝:目前已支持多类身份申领
  • 蚂蚁集团加码AGI等青年人才培育,2025蚂蚁InTech奖在外滩大会揭晓
  • 重塑药物研发,哈佛医学院等开源全新AI模型,用「图神经网络」破解疾病驱动因素多元难题
  • 全球最懂智能体的创业者齐聚外滩大会,未来三年怎么做聊透了
  • 马上上岛|云栖大会「新世代 AI 创想岛」即将揭幕
  • ICRA 2025 | TANGO:机器人告别3D地图,仅靠RGB摄像头实现零样本长距离导航
  • 挑战主流认知!蚂蚁、人大在2025外滩大会发布行业首个原生MoE扩散语言模型
  • 姚顺雨离职OpenAI,「亿元入职腾讯」传闻引爆AI圈,鹅厂辟谣了
  • 全新MoE架构!阿里开源Qwen3-Next,训练成本直降9成
  • 告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式
  • 西贝贾国龙称一定起诉罗永浩;支付宝推出「AI 付」服务;iPhone 17 京东、天猫预订量比上代大增|极客早知道
  • 刚刚,ChatGPT支持MCP了!一句Prompt即可全自动化
  • 百度CTO王海峰:AGI曙光已现,Scaling Law仍有效|新智元十周年峰会
  • 通用Agent是伪命题?昆仑万维方汉现场拆解:垂直推理才是胜负手|新智元十年峰会
  • 文心X1.1三大能力狂飙,海内外实测还挺惊艳!
  • 超越90%城市规划师!清华、MIT等提出人机协作新范式 | Nature子刊
  • 慕尼黑车展,当冷静遇上冷静
  • 博士申请 | 新加坡国立大学计算机系卞亚涛老师招收2026 Fall人工智能全奖博士/博后
  • 别再狂刷CoT了!港科广DIGAI Lab发布隐式推理全景综述,静默思考开启新范式
  • 继首创“AI打赏”服务之后,支付宝再推国内首个“AI付”
  • 蚂蚁百宝箱新品Tbox超级智能体亮相外滩大会,5分钟即可完成专业教学素材
  • 量子宇宙模拟竞赛开启:量子计算机可以模拟并阐明复杂物理现象
  • 3000亿美元OpenAI大单,让世界首富位置换人了
  • 攻克大模型「表格盲区」!ST-Raptor框架发布,实现复杂半结构化表格的精准理解与信息抽取
  • 港大马毅外滩大会演讲:人工智能应从“黑箱”走向“白箱”
  • 兼顾准确率与可解释性,DeepSEA实现抗生素耐药蛋白注释范式转变
  • 交互扩展时代来临:创智复旦字节重磅发布AgentGym-RL,昇腾加持,开创智能体训练新范式
  • RewardDance:字节跳动提出视觉生成奖励扩展新范式,破解“奖励劫持”难题
  • 刚刚,Thinking Machines Lab首次发长文,揭开LLM推理不确定性真相
  • 英伟达的AI已经开始接管整个项目了?SATLUTION自主进化代码库登顶SAT竞赛
  • 大模型智能体不止能写代码,还能被训练成白帽黑客
  • 高德扫街榜,能不能做成中国的「Google Map」?
  • 开启MPV家庭新时代,魏牌高山7正式启动预售
  • ACL最佳论文幕后的北大人!北大张铭带出顶会常胜军和百亿CEO天团|新智元十周年峰会
  • 刚刚,这款Agent浏览器力压OpenAI,72%成功率全球第一!还能免费用
  • =COPILOT()函数横空出世!AI自动写公式效率起飞,网友:让Excel再次伟大
  • 当智能醒于物理世界,英伟达副总裁: 下一个十年属于物理AI!|新智元十周年峰会
  • 刚刚,英伟达祭出下一代GPU!狂飙百万token巨兽,投1亿爆赚50亿
  • 00后挑大梁!近20国选手激战外滩大会,AI科创赛三赛道冠军诞生
  • CoRL 2025 | 港大InfoBodied AI团队首发具身表征新范式,构建任务自适应的感知框架
  • 英伟达下一代GPU登场,Rubin CPX一次推理数百万Token,网友:这是头野兽
  • 谷歌AI新里程碑:一个能「做研究」的系统诞生了,用LLM+树搜索编写专家级软件
  • 爱诗科技完成6000万美元B轮融资,阿里巴巴领投,达晨财智、深创投、北京市AI基金、巨人网络、Antler等跟投
  • 当人工智能「看见」量子世界:AI如何改变对复杂量子系统的认知,南洋理工、上交等发布量子系统学习综述
  • DeepSeek、Gemini都不行?AgenTracer锁定多智能体“背锅侠”,8B小模型反超闭源巨模
  • 北京内推 | AMD北京AI算法团队招聘模型量化/剪枝算法实习生(可远程)
  • SFT真不如RL?MIT团队抛出“RL的剃刀”,砍掉遗忘直通终身学习
  • 院士领衔!从智能算网到司法AI:顶尖学者直播解读AI与工程前沿趋势
  • AI应用元年,这场标杆赛事见证了中国创新速度与野心
  • AI胡说八道这事,终于有人管了?
  • 人人都能炼专属Agent,上海交大开源端侧Agent全栈工具链,真实场景性能超GPT-5!
  • TPAMI 2025 | H2OT:分层沙漏型Tokenizer,重塑高效视频姿态Transformer
  • 史上最贵「打工皇帝」!马斯克解锁1万亿美金工资,拢共分几步?
  • 500 块的「电子宠物」,治好了我的「路怒症」|New Things
  • 苹果发布会:耳机测心率、手表听音乐、iPhone Air超级薄
  • 5999 元起,苹果发布eSIM、超薄 iPhone;王腾再辟谣离职原因谣言;反恶性补贴,主要外卖平台被约谈|极客早知道
  • 不到10天,国产「香蕉」突袭!一次7图逼真还原,合成大法惊呆歪果仁
  • 再也不怕面瘫脸!YouTube黑科技:AI帮你「永久微笑」,连僵尸都咧嘴笑
  • OpenAI真正王牌,不是Ilya!刚刚,奥特曼罕见致谢这两人
  • 缔造OpenAI的秘密,竟只有一个词!新智元十年峰会圆桌,七位大咖激辩
  • Hinton预言失灵?掌握AI技能涨薪23%,比读硕士更赚钱
  • 最薄 iPhone 登场,eSIM 正式落地|苹果秋季发布会新品回顾
  • 文心新出的推理大模型,给了我们信心
  • SFT远不如RL?永不过时的剃刀原则打开「终身学习」大模型训练的大门
  • 从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准
  • 击败多个行业巨头,优必选自研人形机器人最强大脑 Thinker 斩获全球四项第一
  • 字节跳动发布 Seedream 4.0 图像创作模型,豆包、即梦可免费体验
  • 从科幻到产业元年 | 「脑机接口」系统综述发布:全景解析理论、技术、挑战、趋势
  • 硅谷也996实锤了?AI的火,烧掉了硅谷的周末
  • DPad: 扩散大语言模型的中庸之道,杜克大学陈怡然团队免训推理加速61倍
  • Altman亲自发博客点赞,这两大杰出人才是谁?
  • 自变量机器人完成近 10 亿元 A+ 轮融资,多元资本押注共同布局具身智能未来
  • 报名启动!西湖大学云谷青年学者论坛·人工智能分论坛诚邀全球英才
  • 不止综述!多模态大模型持续学习全链路:Benchmark、方法与Codebase一网打尽
  • ICML 2025 | 别再只拼CoT了!不完备信息下的主动推理,LLM普遍掉线
  • 科研实习 | 北京大学计算机学院潘亮铭老师课题组招收NLP/大模型方向科研实习生
  • 时空壶发布 W4:用「硬核」技术,打赢一场 AI 翻译的「标准」之战
  • Science | 西奈山伊坎医学院新AI算法为1600种变异定量「风险」,解析疾病外显率难题
  • TPAMI 2025 | IGEV++:迭代多范围几何编码,刷新立体匹配技术新高度
  • 原来你是这样的外滩大会!
  • 小米通报王腾因泄密被辞退,本人发微博回应;传 IPO 估值 500 亿,宇树回应 ;辛顿自曝被女友用 AI 分手 | 极客早知道
  • Hinton自曝:前女友提分手,用ChatGPT列出自己「七宗罪」
  • 从「会说」迈向「会做」,LLM下半场:Agentic强化学习范式综述
  • 字节Seedream 4.0将全量开放!抢先评测来了,我们摸索出AI生图20种「邪修」玩法
  • 全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
  • 扎克伯格的豪赌初见成效?Meta新方法让LLM长上下文处理提速30倍
  • 具身VLA后训练:TeleAI提出潜空间引导的VLA跨本体泛化方法
  • 上海AI Lab重磅综述:AI实现自主科学发现时代已经到来
  • 6 个月估值暴涨 5 倍突破 100 亿美元,三个「00后」逼急 Scale AI
  • 深圳内推 | 腾讯音乐天琴实验室招聘音乐生成算法研究员(社招/校招)
  • 给RL装上“防抖器”!GRPO稳化版来了:更高熵、更低KL、更稳更新
  • 导师放养真的会毁掉一个人……
  • Focal Loss也能无监督?北大×港中文团队用“双重不确定性优化”提升鲁棒3D感知
  • 上汽通用五菱与华为深化合作,推出首款车型宝骏华境S
  • IEEE TPAMI | M²Diffuser: 让机器人学会“脑补”,在复杂3D场景中实现精准移动操作
  • 国行版苹果 AI 推迟至年底上线;视频平台广告被曝「偷时间」;美国计划限制进口中国无人机和重型载具 | 极客早知道|极客早知道
  • 16岁创业,22岁做成百亿独角兽!3位高中同学帮大厂训AI年入1亿美金
  • 《2025新智元ASI前沿趋势报告》全文
  • 一图看透全球大模型!新智元十周年钜献,2025 ASI前沿趋势报告37页首发
  • 苹果端侧AI两连发!模型体积减半、首字延迟降85倍,iPhone离线秒用
  • Claude不让我们用!国产平替能顶上吗?
  • SceneSplat: 基于3DGS的场景理解和视觉语言预训练,让3D高斯「听懂人话」的一跃
  • 慕尼黑车展 2025前瞻:中国队组团出海,BBA 走向「新」时代
  • 国内外AI大厂重押,初创梭哈,谁能凭「记忆」成为下一个「DeepSeek」?
  • 斯坦福:优化器「诸神之战」?AdamW 凭「稳定」胜出
  • 字节跳动Seed推出「机器人大脑」Robix:让机器人学会思考、规划与灵活互动
  • 浙大提出SSGaussian:注入语义与结构灵魂的3D风格迁移,让高斯溅射场景化身艺术品
  • 苹果 iPhone 17 系列规格已全被曝光;Anthropic 全面封杀中国公司接入;今夜将迎来「血月」月全食|极客早知道
  • OpenAI重组GPT-5「灵魂」团队!亚裔女负责人遭调离,罕见自曝AI幻觉祸首
  • 设计师大解放!清华发布「建筑平面图」自动生成模型 | ACL'25
  • 谁不用谁亏!Karpathy吹爆GPT-5:10分钟编码完胜Claude一小时,奥特曼秒回感谢
  • 震撼实锤!清华姚班校友揭「1.4×加速」陷阱:AI优化器为何名不符实?
  • Anthropic被作家告了,违规下载700万本书,15亿美元和解了
  • 英伟达的局:狂撒15亿美元,从Lambda那租到了搭载自家AI芯片的GPU服务器
  • OpenAI罕见发论文:我们找到了AI幻觉的罪魁祸首
  • 00后以1.1亿美金「掀桌」,硅谷AI将书写影视新传奇 终结制片旧时代
  • 任意骨骼系统的模型都能驱动?AnimaX提出基于世界模型的3D动画生成新范式
  • ICCV 2025 | MOSEv2 全新亮相,第七届 LSVOS 挑战赛正式开启!
  • IEEE TPAMI 2025| PointGST:参数量仅0.67%,精度首破99%,三维点云处理迎来谱域新范式!
  • 华为新问界 M7,6 小时订单破 13 万;等 eSIM,iPhone17 Air 首发无国行;特斯拉拟给马斯克 1 万亿薪酬

Adam的Update RMS为何总是0.2?噪声模拟到理论近似全讲透

原创 苏剑林 2025-09-12 20:37 北京

训练一稳定,Adam就变0.2?

©PaperWeekly 原创 · 作者 | 苏剑林

单位 | 科学空间

研究方向 | NLP、神经网络

众所周知,我们很早就开始尝试将 Muon 用于大规模 LLM 的训练。

特别地,在QK-Clip巧解MaxLogit爆炸难题:让Muon在Scaleup之路上更进一步中,我们提出了 “Match Adam Update RMS” 的技巧,以便快速从 Adam 迁移到 Muon 上,这个技巧同样用到了 Kimi K2 的训练中。

该技巧是指将 Muon 的 Update RMS 统一成 0.2,这使得我们复用 Adam 的学习率和权重衰减率。

这一技巧的背后,是我们观察到 Adam 的 Update RMS 约等于 0.2,并且这一现象是稳定且可复现的。这便引发了一个有趣的问题:为什么 Adam 的 Update RMS 是 0.2?我们可以从理论上解释它吗?

问题引入

首先描述一下现象:从实验中我们观察到,大致上在 Warmup 结束、模型进入正式训练后,Adam 的 Update RMS 几乎都保持在 0.2~0.3 之间,并且不同尺寸的模型也呈现出相似的规律。

这些模型的共同点是都用 Adam 训练,参数是 。由于共性很明显,所以这大概率不是巧合,因此笔者尝试分析背后的原理。

然后我们回顾一下 Adam 优化器的形式:

注意:本文所有向量的乘除法,包括平方,默认都是指 Hadamard 积/商,即 Element-wise 的乘/除。

我们要做的事情,就是证明 ,至少在 这组设置下如此。

由于我们关心的是稳定训练后的情形,因此可以认为 t 足够大,以至于 都足够接近于 0,那么就不用区分 。同时,我们假设 足够小,也可以忽略,于是有

对于 ,我们可以得到展开式

数值模拟

如果我们假设 都是从同一个分布采样出来的,那么我们就可以直接用数值模拟的方法估计 。事不宜迟,让我们从最简单的标准正态分布 进行尝试,参考代码如下:

import numpy as npN, T = 10000, 2000beta1, beta2 = 0.9, 0.95m, v = 0, 0for i in range(T): g = np.random.randn(N) m = beta1 * m + (1 - beta1) * g v = beta2 * v + (1 - beta2) * g**2u = m / v**0.5rms = (u**2).mean()**0.5print(rms)

大家猜猜结果是多少?答案大概是 0.225,居然跟实验结果惊人地相似!这反过来表明我们的模拟假设跟实际情况还是很吻合的。

可能有读者觉得不对, 不是纯噪声了吗,这还能吻合?实际训练当然不可能是纯噪声,只能说单次梯度的信噪比小得可怜,因此可以用纯噪声来模拟。

读者可以自行折腾一下上述参考代码,观察 Update RMS 的影响变量,大体结论是:Update RMS 跟 正相关,跟 似乎关系不大,如果 的分布具有非零均值(相当于增大梯度的信噪比),那么 Update RMS 也会变大。

平均近似

这一节笔者尝试从理论方面推导上述模拟结果的一个近似解析解。首先,我们从 RMS 的定义可知,要求 ,需要先求 。笔者的想法是,用 的期望作为它的近似,并进一步转化为平均场近似:

可能会有读者质疑最后一步近似的合理性。笔者的建议是,先不管这些细枝末节,就好比上一节假设 一样,先算了再说,如果结果合理那么过程必然一定程度上也是合理的。

现在我们分别算分子、分母,这次我们一般地设 ,其中分母比较简单

至于分子,可以直接展开平方计算,也可以稍微偷懒一下:我们要求的是 的二阶矩 ,它又等于 ,由于 的加权平均,所以必然有 ;至于方差,它具有平方可加性,因此

所以

结果分析

由于 已经是平方后的向量,所以为了估计 ,我们只需要对各个分量求平均然后开平方。求平均这一步,我们不妨再来一次平均场近似(分子分母分别求平均),最终将得到

它有两个影响因子:一是 ,这可以看成是梯度的信噪比(SNR);二是 ,这 是Adam 的超参数之一。特别地,结果不依赖于 ,这跟前面的模拟结果吻合。那么这个式子究竟近似得好不好呢?我们不妨考虑最简单的特例 ,此时

代入 ,结果是 ,跟模拟结果和实践表现居然都很吻合!进一步地,它跟模拟结果的多个对比如下:

▲ 模拟结果与平均场近似(不同 beta1、beta2)

应该说,近似程度还是不错的,特别是 之后,结果几乎跟平均场近似重合了。至于考虑 SNR 的比较结果如下:

▲ 模拟结果与平均场近似(不同 beta1、SNR)

当信噪比增大时,平均场近似的误差开始变大,不过仍旧能预测一个整体趋势。事实上,实际训练中梯度的信噪比很少机会能有接近 1 这么大,因此依然可以认为平均场是一个良好近似。

反向预测

如果我们已经接受平均场近似(7),那么可以反过来用它估算梯度的信噪比:

在实际训练中, 是给定的,(也就是 Adam 的 Update RMS)也是可以直接估算的,所以上式是可计算的。当然,这个式子只对 Adam 适用,有没有更一般的估计思路呢?还真有!别忘了前面我们估计得到

那么对它的分量求和然后开平方,我们认为它会是 的一个近似:

至于二阶矩是 ,而像 Muon 之类的优化器并没有二阶矩可用,但是我们留意到二阶矩的结果是跟 无关的,所以我们不妨考虑一个最简单的特例—— ——此时

当然这可能有点勉强,但估算嘛肯定是怎么方便怎么来。这个“近似”意味着成立 ,于是我们有

右端的形式跟式(7)如出一辙,所以我们可以写出

也就是用 替代 ,这就给出了一种带动量优化器通用的估计 的思路。

可能还有读者想问动量都没有咋办?这就真没有办法了,因为这里的 属于跨优化轨迹的统计量,我们总得有些跨轨迹的统计信息,才有可能去估计它。

文章小结

本文主要从模拟实验和理论近似两个角度探讨了 Adam 的 Update RMS,它可以作为我们在 Muon 优化器中将 Update RMS 对齐到 0.2 的理论依据之一。

更多阅读

#投 稿 通 道#

让你的文字被更多人看到

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

阅读原文

跳转微信打开

联系我们