动态列表

  • 2027万亿视频市场将爆发!AI十年如何重塑内容产业?|新智元十周年峰会
  • GPT-5是口袋博士?诺奖得主哈萨比斯怒怼奥特曼:博士级AI纯属扯淡!
  • 微软用「光」跑AI登上Nature!100倍能效颠覆GPU,华人首席研究员扛鼎
  • 缺钱但不缺洞见:刚刚,陶哲轩揭秘AI如何吞噬数学项目的灵魂!
  • 马斯克深夜挥刀,Grok幕后员工1/3失业!谷歌AI靠人肉堆起,血汗工厂曝光
  • 全景呈现大模型开源技术路线和生态,蚂蚁开源在2025外滩大会发布全新报告
  • 抢先实测美团首个AI Agent,让我体验一把「懒人点餐」的快乐
  • 将KV Cache预算降至1.5%!他们用进化算法把大模型内存占用砍下来了
  • LLaSO 横空出世:逻辑智能推出全球首个完全开源语音大模型框架,定义 LSLM 研究新基准
  • 为这一个Tab键,我愿意单独付费:Cursor用在线强化学习优化代码建议,护城河有了?
  • 小红书智创音频技术团队:SOTA对话生成模型FireRedTTS-2来了,轻松做出AI播客!
  • 耗资15000个A100 GPU日!港中文、阿里等发布600万规模T2I推理数据集与基准
  • INFFUS 25 | FS-Diff:一步到位,用扩散模型同时实现多模态图像融合与超分辨率
  • iPhone 17 全系上线拼多多,5099 起;「罗西大战」后续,传「预制菜国标」过审;小米蔚来小鹏抵制「车圈黑公关」
  • 突发!苹果AI大失血:Siri前掌门离职,核心团队被挖角,新功能延期到2026
  • 对Transformer说不!清华刘嘉:2045数字永生降临|新智元十年峰会
  • 急诊室生死逆转!酒后呕吐,GPT-5一眼锁定食管穿孔
  • 周周996,顿顿预制餐!美国AI界00后卷疯了: 住「棺材房」一周工作92小时
  • 学历越高,越怕熬夜!2.3万人10年研究实锤:睡得越晚,智力下降越快
  • Arm拥抱AI:五倍性能,三倍能效
  • Meta开源MobileLLM-R1模型,不到1B参数,用1/10的训练就超越了Qwen3
  • 清华、上海AI Lab等顶级团队发布推理模型RL超全综述,探索通往超级智能之路
  • 快手可灵团队提出MIDAS:压缩比64倍、延迟低于500ms,多模态互动数字人框架实现交互生成新突破
  • 成本不足60美元!开源U-ARM:让机器人模仿学习更亲民的通用遥操作界面
  • 让机器人“大脑”更轻更快:SQAP-VLA首次实现VLA模型量化与剪枝协同加速
  • 数据与AI双引擎驱动智能未来,2025外滩大会论数据进化之道
  • iPhone 17 Air 在华发售延期;罗永浩直播回应西贝;《流浪地球》第三部剧本完稿,共计十五万字|极客早知道
  • 刚刚,谷歌发布71页AI科研报告!6大领域全面超越专家,几小时顶几个月
  • 一夜刷屏!27岁姚顺雨离职OpenAI,清华姚班天才转型做产品经理?
  • 王小川押注下个十年:为人类造医生,为生命建模型|新智元十周年峰会
  • 一刀砍掉90%训练成本!Qwen3-Next用1/10算力练成「长文推理利器」
  • AI意识「觉醒」!图灵得主Bengio重磅发声:AI正接近人类意识临界点
  • 扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
  • 如何为LLM智能体编写工具?Anthropic官方教程来了
  • 腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破
  • 北京/上海内推 | 小红书智能审核算法团队招聘NLP/多模态内容理解算法工程师/实习生
  • 「做笔记」的RAG来了!告别噪声与骨牌效应,EviNote-RAG稳住长链推理
  • KDD 2025最佳论文亚军:参数不同还能共训?异构知识迁移框架HtFLlib全面开源
  • Adam的Update RMS为何总是0.2?噪声模拟到理论近似全讲透
  • 我苦寻的「库乐队」,叫 MiniMax Music 1.5
  • Science Advances | AI for Earth:聆听海洋的「脉搏」,新一代AI大模型精准预测十年气候脉动
  • 外滩大会嘉宾锐评AGI即将“撞墙”,正在向数字与物理世界进化
  • 港科大 X MiniMax:高质量数据、小模型挑战复杂网络搜索难题
  • 为了网罗 AI 创新者,上海搞了场万人科创大赛
  • 蚂蚁集团数字蚂力首批专家级“AI数字员工团队”亮相外滩大会
  • “IIFAA数字卡包”上线支付宝:目前已支持多类身份申领
  • 蚂蚁集团加码AGI等青年人才培育,2025蚂蚁InTech奖在外滩大会揭晓
  • 重塑药物研发,哈佛医学院等开源全新AI模型,用「图神经网络」破解疾病驱动因素多元难题
  • 全球最懂智能体的创业者齐聚外滩大会,未来三年怎么做聊透了
  • 马上上岛|云栖大会「新世代 AI 创想岛」即将揭幕
  • ICRA 2025 | TANGO:机器人告别3D地图,仅靠RGB摄像头实现零样本长距离导航
  • 挑战主流认知!蚂蚁、人大在2025外滩大会发布行业首个原生MoE扩散语言模型
  • 姚顺雨离职OpenAI,「亿元入职腾讯」传闻引爆AI圈,鹅厂辟谣了
  • 全新MoE架构!阿里开源Qwen3-Next,训练成本直降9成
  • 告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式
  • 西贝贾国龙称一定起诉罗永浩;支付宝推出「AI 付」服务;iPhone 17 京东、天猫预订量比上代大增|极客早知道
  • 刚刚,ChatGPT支持MCP了!一句Prompt即可全自动化
  • 百度CTO王海峰:AGI曙光已现,Scaling Law仍有效|新智元十周年峰会
  • 通用Agent是伪命题?昆仑万维方汉现场拆解:垂直推理才是胜负手|新智元十年峰会
  • 文心X1.1三大能力狂飙,海内外实测还挺惊艳!
  • 超越90%城市规划师!清华、MIT等提出人机协作新范式 | Nature子刊
  • 慕尼黑车展,当冷静遇上冷静
  • 别再狂刷CoT了!港科广DIGAI Lab发布隐式推理全景综述,静默思考开启新范式
  • 博士申请 | 新加坡国立大学计算机系卞亚涛老师招收2026 Fall人工智能全奖博士/博后
  • 继首创“AI打赏”服务之后,支付宝再推国内首个“AI付”
  • 蚂蚁百宝箱新品Tbox超级智能体亮相外滩大会,5分钟即可完成专业教学素材
  • 量子宇宙模拟竞赛开启:量子计算机可以模拟并阐明复杂物理现象
  • 3000亿美元OpenAI大单,让世界首富位置换人了
  • 攻克大模型「表格盲区」!ST-Raptor框架发布,实现复杂半结构化表格的精准理解与信息抽取
  • 港大马毅外滩大会演讲:人工智能应从“黑箱”走向“白箱”
  • 兼顾准确率与可解释性,DeepSEA实现抗生素耐药蛋白注释范式转变
  • 交互扩展时代来临:创智复旦字节重磅发布AgentGym-RL,昇腾加持,开创智能体训练新范式
  • RewardDance:字节跳动提出视觉生成奖励扩展新范式,破解“奖励劫持”难题
  • 刚刚,Thinking Machines Lab首次发长文,揭开LLM推理不确定性真相
  • 英伟达的AI已经开始接管整个项目了?SATLUTION自主进化代码库登顶SAT竞赛
  • 大模型智能体不止能写代码,还能被训练成白帽黑客
  • 高德扫街榜,能不能做成中国的「Google Map」?
  • 开启MPV家庭新时代,魏牌高山7正式启动预售
  • ACL最佳论文幕后的北大人!北大张铭带出顶会常胜军和百亿CEO天团|新智元十周年峰会
  • 刚刚,这款Agent浏览器力压OpenAI,72%成功率全球第一!还能免费用
  • =COPILOT()函数横空出世!AI自动写公式效率起飞,网友:让Excel再次伟大
  • 当智能醒于物理世界,英伟达副总裁: 下一个十年属于物理AI!|新智元十周年峰会
  • 刚刚,英伟达祭出下一代GPU!狂飙百万token巨兽,投1亿爆赚50亿
  • 00后挑大梁!近20国选手激战外滩大会,AI科创赛三赛道冠军诞生
  • CoRL 2025 | 港大InfoBodied AI团队首发具身表征新范式,构建任务自适应的感知框架
  • 英伟达下一代GPU登场,Rubin CPX一次推理数百万Token,网友:这是头野兽
  • 谷歌AI新里程碑:一个能「做研究」的系统诞生了,用LLM+树搜索编写专家级软件
  • 爱诗科技完成6000万美元B轮融资,阿里巴巴领投,达晨财智、深创投、北京市AI基金、巨人网络、Antler等跟投
  • 当人工智能「看见」量子世界:AI如何改变对复杂量子系统的认知,南洋理工、上交等发布量子系统学习综述
  • 北京内推 | AMD北京AI算法团队招聘模型量化/剪枝算法实习生(可远程)
  • SFT真不如RL?MIT团队抛出“RL的剃刀”,砍掉遗忘直通终身学习
  • 院士领衔!从智能算网到司法AI:顶尖学者直播解读AI与工程前沿趋势
  • DeepSeek、Gemini都不行?AgenTracer锁定多智能体“背锅侠”,8B小模型反超闭源巨模
  • AI应用元年,这场标杆赛事见证了中国创新速度与野心
  • AI胡说八道这事,终于有人管了?
  • 人人都能炼专属Agent,上海交大开源端侧Agent全栈工具链,真实场景性能超GPT-5!
  • TPAMI 2025 | H2OT:分层沙漏型Tokenizer,重塑高效视频姿态Transformer
  • 史上最贵「打工皇帝」!马斯克解锁1万亿美金工资,拢共分几步?
  • 500 块的「电子宠物」,治好了我的「路怒症」|New Things
  • 苹果发布会:耳机测心率、手表听音乐、iPhone Air超级薄
  • 5999 元起,苹果发布eSIM、超薄 iPhone;王腾再辟谣离职原因谣言;反恶性补贴,主要外卖平台被约谈|极客早知道
  • 不到10天,国产「香蕉」突袭!一次7图逼真还原,合成大法惊呆歪果仁
  • 再也不怕面瘫脸!YouTube黑科技:AI帮你「永久微笑」,连僵尸都咧嘴笑
  • OpenAI真正王牌,不是Ilya!刚刚,奥特曼罕见致谢这两人
  • 缔造OpenAI的秘密,竟只有一个词!新智元十年峰会圆桌,七位大咖激辩
  • Hinton预言失灵?掌握AI技能涨薪23%,比读硕士更赚钱
  • 最薄 iPhone 登场,eSIM 正式落地|苹果秋季发布会新品回顾
  • 文心新出的推理大模型,给了我们信心
  • SFT远不如RL?永不过时的剃刀原则打开「终身学习」大模型训练的大门
  • 从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准
  • 击败多个行业巨头,优必选自研人形机器人最强大脑 Thinker 斩获全球四项第一
  • 字节跳动发布 Seedream 4.0 图像创作模型,豆包、即梦可免费体验
  • 从科幻到产业元年 | 「脑机接口」系统综述发布:全景解析理论、技术、挑战、趋势
  • 硅谷也996实锤了?AI的火,烧掉了硅谷的周末
  • DPad: 扩散大语言模型的中庸之道,杜克大学陈怡然团队免训推理加速61倍
  • Altman亲自发博客点赞,这两大杰出人才是谁?
  • 自变量机器人完成近 10 亿元 A+ 轮融资,多元资本押注共同布局具身智能未来
  • 不止综述!多模态大模型持续学习全链路:Benchmark、方法与Codebase一网打尽
  • 报名启动!西湖大学云谷青年学者论坛·人工智能分论坛诚邀全球英才
  • 科研实习 | 北京大学计算机学院潘亮铭老师课题组招收NLP/大模型方向科研实习生
  • ICML 2025 | 别再只拼CoT了!不完备信息下的主动推理,LLM普遍掉线
  • 时空壶发布 W4:用「硬核」技术,打赢一场 AI 翻译的「标准」之战
  • Science | 西奈山伊坎医学院新AI算法为1600种变异定量「风险」,解析疾病外显率难题
  • TPAMI 2025 | IGEV++:迭代多范围几何编码,刷新立体匹配技术新高度
  • 原来你是这样的外滩大会!
  • 小米通报王腾因泄密被辞退,本人发微博回应;传 IPO 估值 500 亿,宇树回应 ;辛顿自曝被女友用 AI 分手 | 极客早知道
  • Hinton自曝:前女友提分手,用ChatGPT列出自己「七宗罪」
  • 从「会说」迈向「会做」,LLM下半场:Agentic强化学习范式综述
  • 字节Seedream 4.0将全量开放!抢先评测来了,我们摸索出AI生图20种「邪修」玩法
  • 全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
  • 扎克伯格的豪赌初见成效?Meta新方法让LLM长上下文处理提速30倍
  • 具身VLA后训练:TeleAI提出潜空间引导的VLA跨本体泛化方法
  • 上海AI Lab重磅综述:AI实现自主科学发现时代已经到来
  • 6 个月估值暴涨 5 倍突破 100 亿美元,三个「00后」逼急 Scale AI
  • 深圳内推 | 腾讯音乐天琴实验室招聘音乐生成算法研究员(社招/校招)
  • 给RL装上“防抖器”!GRPO稳化版来了:更高熵、更低KL、更稳更新
  • Focal Loss也能无监督?北大×港中文团队用“双重不确定性优化”提升鲁棒3D感知
  • 导师放养真的会毁掉一个人……
  • 上汽通用五菱与华为深化合作,推出首款车型宝骏华境S
  • IEEE TPAMI | M²Diffuser: 让机器人学会“脑补”,在复杂3D场景中实现精准移动操作
  • 国行版苹果 AI 推迟至年底上线;视频平台广告被曝「偷时间」;美国计划限制进口中国无人机和重型载具 | 极客早知道|极客早知道

大模型碰到真难题了,测了500道,o3 Pro仅通过15%

基准测试是检验大模型能力的一种方式,一般而言,一个有用的基准既要足够难,又要贴近现实:问题既能挑战前沿模型,又要反映真实世界的使用场景。

然而,现有测试面临着「难度–真实性」的矛盾:侧重于考试的基准往往被人为设置得很难,但实际价值有限;而基于真实用户交互的基准又往往偏向于简单的高频问题。

在此背景下,来自斯坦福大学、华盛顿大学等机构的研究者探索了一种截然不同的方式:在未解决的问题上评估模型的能力。

与一次性打分的静态基准不同,该研究不断收集未解决的问题,然后通过验证器辅助筛选与社区验证机制,实现对模型的持续异步评估。

具体而言,本文提出了 UQ(Unsolved Questions),这是一个由 500 道题组成的测试集,涵盖计算机理论、数学、科幻、历史等主题,用于考察模型在推理、事实准确性以及浏览等方面的能力。UQ 在设计上兼具难度大与贴近真实两大特点:这些问题大多是人类遇到但尚未解决的难题,因此攻克它们可直接产生现实价值。

图片
  • 论文标题:UQ: Assessing Language Models on Unsolved Questions

  • 论文地址:https://arxiv.org/pdf/2508.17580v1

  • 项目地址:https://uq.stanford.edu/

总结而言,本文贡献如下:

  • 提出了 UQ 数据集及其收集流程:结合规则过滤器、大语言模型评审以及人工审核,以确保最终问题的质量;

  • UQ-Validators:复合验证策略,利用生成器–验证器之间的能力差距来构建无真值验证系统(一般而言模型验证能力优于生成能力),并对候选答案进行预筛选,以便后续人工审核;

  • UQ-Platform:一个开放平台,让专家能够共同验证问题与答案,从而实现持续的、异步的、社区驱动的评估。

实验中,表现最好的模型仅在 15% 的问题上通过了 UQ 验证,而初步人工核查已经在这些通过验证的答案中识别出一些正确解答。

图片

数据集介绍

UQ 数据集由 500 道具有挑战性的未解决问题组成,问题来源问答社区 Stack Exchange,并且是经过三轮筛选得到的。

图片

在筛选流程上,本文首先人工选择了 80 个 Stack Exchange 社区(例如 Math Overflow、Physics),并抓取其中未解答的问题,得到大约 300 万个原始候选问题。

随后,进入多阶段筛选流程。筛选的每一阶段都会逐步缩小问题池:基于规则的筛选将问题缩减至 33,916 个(占原始问题池的 1.13%);基于大语言模型的筛选进一步缩减至 7,685 个(占原始的 0.26%);最终通过人工审核(如剔除残留的重复、过于简单、偏题或违反规则的问题),得到一个精心整理的 500 道题集(占原始的 0.02%)。

随着问题在筛选流程中逐步推进,它们的难度和质量也在逐渐提升。尤其是基于大语言模型的筛选,显著提高了问题的难度。

图片

数据集组成如下所示,主要包含科学类问题,其次是技术类与生活艺术类。本文还发现不同领域的问题能探测模型的不同能力:例如数学问题通常需要开放式证明,而科幻奇幻类问题则偏重浏览检索能力(如根据片段情节识别书籍名称)。

一旦某个问题被判定为已解决,研究者就会在后续版本中将该问题移除,并用新的未解决问题替换。

图片

UQ 验证器

虽然 UQ 数据集非常具有价值,但要将其用作模型性能的基准,仍需配套的评分指标。然而,由于缺乏标准答案,无法像考试基准那样进行自动验证。

因此,本文转向无监督验证器,即无需标准答案。由于未解问题往往极具挑战性,这些验证器的主要目标并非证明某个候选答案正确,而是排除错误的候选答案;因此,本文刻意使用 validator(验证器)一词,而非 judge 或 verifier。

需要特别指出的是,由于缺少标准答案,这类验证器本身可能经常出错,但它们仍能在后续人工审核中发挥辅助作用。

据了解,本文之所以开发无需标准答案的验证器,核心动机在于这样一个假设:对难题候选答案进行验证可能比生成这些答案更容易。实验中采用了这样的流程,让一系列能力递增的模型(例如 o3-mini → o4-mini → o3)回答这 500 道题,记录它们的答题准确率;接着,让每个模型在不接触标准答案的情况下,验证其他所有模型给出的答案;最后,用真实答案对这些验证结论进行打分,计算验证准确率。

图 5 左显示:随着模型能力的提升,它们在验证准确率上的进步速度明显快于答题准确率。

图片

实验中使用的验证器 pipeline:

图片

实验及结果

实验评估了 5 个模型,包括 o3、o4-mini、o3-mini、Gemini 2.5 Pro 和 Claude 3.7 Sonnet。

表 1 结果显示,与原始基线相比,验证策略能够实质性地提高验证的准确率和精度。例如,对 Claude 3.7 Sonnet 而言,准确率从 21.6% 提升到 73.2%,精度从 13.26% 提升到 20%,但往往是以召回率下降为代价。

图片

为了确认最终得到的最佳 UQ 验证器对人类评审者有帮助,该研究邀请若干评审员对 25 个验证问题进行评分,判断其给出的判断理由链是否在逻辑上成立。表 2 显示,人类评审与验证器的一致率及理由链的准确性都很高,表明该验证器能为人类评审者提供有效支持。

图片

将大语言模型用于答案验证时,另一个挑战是它们常常表现出明显的评估偏见。当研究者把前沿模型直接应用于本场景时,发现所有模型在评估自身或同系模型(即同一开发者的模型)时,都出现了过度乐观现象:预测出的模型性能远高于实际性能,如图 7 所示。

  • Gemini 明显偏向自身,相对于其他模型给出显著更高的评分;

  • Claude 对所有答案模型(不仅仅是自身)都表现出过度乐观;

  • OpenAI 的 o 系列模型则对其他 o 系列同门模型给出过高评价。

随着模型能力递增(o3-mini → o3),这种偏见虽有所降低,但并未彻底消除。

本文进一步发现,采用复合验证器能够显著削弱答案验证中的自我偏见与过度乐观。

图片

最后,本文还发现,一个更强的答案生成模型并不一定就是更强的答案验证模型。

本文通过基线提示法和 3 轮迭代验证流程绘制了模型在 500 个 HLE 问题上的验证准确率与答案准确率关系图。虽然更好的答案性能通常预示着更好的验证性能(整体呈上升趋势),但并非绝对。

例如:在没有流程验证时,o3 作为答案模型弱于 Gemini 2.5 Pro,但作为验证模型却更强;采用流程验证后,o3-mini 与 Claude 3.7 Sonnet 之间观察到同样的逆转趋势。此外,尽管 Claude 3.7 Sonnet 在答案准确率上显著落后于 Gemini 2.5 Pro,但其基于流程验证的表现却超越了 Gemini 2.5 Pro 的基线验证性能。

图片

了解更多内容,请参考原论文。

]]>

联系我们