动态列表

  • 阿里王牌Agent横扫SOTA,全栈开源力压OpenAI!博士级难题一键搞定
  • ChatGPT负责人深度复盘,爆4o复活内幕!过快下线是失误,将迭代模型人格
  • 全球首个AI基因组诞生,35亿年生命代码重编程!生物学迎「ChatGPT时刻」
  • 芯片大地震,黄仁勋355亿入股!英特尔要为老黄造CPU,股价狂飙30%
  • 科大讯飞发布面向东盟的多语言大模型及系列产品,布局中国—东盟AI生态大未来
  • Nature | 20年后你会患上哪些疾病?AI准确预测超1000种疾病患病风险,助力预防
  • 我们还是低估了英伟达
  • 谁在拖慢你的RL?别怪显卡,错的可能是你的PG-loss
  • ICCV 2025 | Gap即力量!挖掘模态间隔潜力,MG-CLIP实现持续学习SOTA
  • 少样本不够看?给LLM装上“学习引擎”,上下文学习迈入千样本时代
  • 北京内推 | 字节跳动国际电商团队招聘大模型方向算法实习生
  • OneSearch,揭开快手电商搜索「一步到位」的秘技
  • 17.38 万的大六座 SUV,吉利用银河 M9 敲碎了友商的心
  • 刚刚,OpenAI在ICPC 2025编程赛上满分登顶,Gemini也达到金牌水平
  • 从一个公众号智能体说起:好用的Agent,究竟需要什么?
  • B站出海的强有力支柱:最新开源文本转语音模型IndexTTS-2.0标志零样本TTS进入双维度时代
  • 腾讯企点营销云发布Magic Agent,营销工具全面AI化
  • 带屏 AI 眼镜登场!Meta「眼镜全家桶」炸街了
  • 通义DeepResearch震撼发布!性能比肩OpenAI,模型、框架、方案完全开源
  • 让机器人「不只是走路」,Nav-R1引领带推理的导航新时代
  • 刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
  • 腾讯 AI 的新叙事
  • 传小米 YU7 新车型曝光纽北;李飞飞放出 3D AI 新成果; 49.2%,火山引擎大模型调用份额占半壁江山
  • 小扎豪掷143亿,却换不来AI燃料!数据之争下半场,中国冲出一匹黑马
  • 终结数据荒!智源开源首个Deep Research数据合成框架InfoSeek
  • 我用一张照片,生成了一个能走进去的世界
  • 奥特曼爆料:GPT-5重构彻底一切!一人顶五个团队
  • 最新实测GPT-5-Codex:前端能力碾压,复杂项目轻松搞定,Claude可以扔了!
  • TPAMI 2025 | 弱监督与自监督引领自动驾驶运动预测新范式,用场景分割“脑补”运动,仅需0.01%标注,性能媲美监督方法
  • 南开大学等提出RAM++:从关注“降质”到关注“内容”,实现鲁棒的全能图像恢复
  • 不改参数不重训!CARVE一招纠偏,对比注意力让视觉模型精准聚焦
  • ICML 2025 | AI福尔摩斯来了!LLaVA-ReID多轮发问,行人重识别一步步锁定
  • 博士申请 | 新加坡国立大学CoSTA Lab招收人工智能全奖博士/RA/实习生
  • 清华新作颠覆CoT!ParaThinker并行思考,终结单链推理天花板
  • 没想到,音频大模型开源最彻底的,居然是小红书
  • 6.1B打平40B Dense模型,蚂蚁开源最新MoE模型Ling-flash-2.0
  • 「AI助手」真来了?谷歌牵头推进Agent支付协议AP2
  • 腾讯AI Lab首创RL框架Parallel-R1,教大模型学会「并行思维」
  • 阿里开源通义DeepResearch,性能超OpenAI、DeepSeek旗舰模型
  • 华为发布4+10+N中小企业智能化方案,打通迈向智能世界「最后一公里」
  • LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
  • Cell丨谷歌AI co-scientist联合帝国理工揭开谜团:提出并验证细菌基因转移机制假说
  • 华为首款旅行车 1 小时订单破 5000,余承东再次「封神」?
  • 腾讯、复旦、上海创智学院提出SwiftVideo:首个Continuous-time视频蒸馏加速框架,实现业界最快最高清视频生成
  • 刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
  • 突破单链思考上限,清华团队提出原生「并行思考」scale范式
  • 刘强东喊话王兴:尊重兴哥,不应是仇人;美机器人公司估值暴涨至390亿美元;iOS 微信支持聊天发实况图|极客早知道
  • 7亿人每周狂发180亿条消息!OpenAI首次揭秘ChatGPT最火用途
  • LLM会梦到AI智能体吗?不,是睡着了也要加班
  • 一周休4天!老黄、盖茨站台,网友炸锅:是AI福利,还是裁员信号?
  • AI精神病爆发!沉迷ChatGPT把人「宠」出病,KCL心理学家实锤
  • 谷歌DeepMind「粪坑淘金」全新方法,暗网毒数据也能训出善良模型
  • 北京内推 | 微软Copilot算法团队招聘大模型推理方向研究型实习生
  • EMNLP 2025 | 跨风格不误判!MoSEs用职业写作风格建模,检测AI文本更稳更准
  • 一招打破瓶颈!HyperTree超树规划:AI掌握层级化推理,复杂任务全面突破
  • 高阶程序,让AI从技术可行到商业可信的最后一公里
  • 网络顶会获奖!华为提出端网协同RDMA传输架构,解决大规模AI集群网络可扩展性问题
  • 具身智能能力狂飙,安全却严重滞后?首个安全可信EAI框架与路线图出炉!
  • 在端侧 AI 时代正式到来之前,联想想先做好硬件「杀手锏」
  • 火山引擎发布PromptPilot,推动大模型应用高效落地
  • 在「外滩大会·具身智能:从泛化到行动,重塑产业未来」上,这些大牛都说了什么?
  • 国内首个!夸克公开覆盖全阶段医师考试的健康大模型测试集
  • 蚂蚁百灵开源轻量级MoE语言模型Ling-mini-2.0,1.4B激活性能比肩大规模模型
  • 浙大侯廷军团队联合IIT等发布系统综述:全景解析机器学习加持下的「增强采样」方法
  • BMVC 2025 | 无需源数据,Grad-CL如何利用梯度引导实现精准的眼底图像分割?
  • 斯坦福大学提出PSI:一种通过概率结构集成,从数据中学习可控、可灵活提示的世界模型的新系统
  • 谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
  • 从少样本到千样本!MachineLearningLM给大模型上下文学习装上「机器学习引擎」
  • 最新披露,骑手收入真实情况揭晓
  • 刚刚,OpenAI发布GPT-5-Codex:可独立工作超7小时,还能审查、重构大型项目
  • 多模态BUG修复新SOTA:慕尼黑工大GUIRepair登上SWE-bench Multimodal榜单第一
  • 15年大佬深夜痛哭半小时!氛围编程巨坑曝光,95%程序员沦为「AI保姆」
  • 面试不是考试,是表演!新晋OpenAI员工:重磅揭秘顶级AI岗通关密码
  • GPT-5惨遭零分打脸,顶级AI全军覆没!奥特曼AI博士级能力神话破灭
  • 反转!LeCun刚转发「全球最快开源推理模型」,ETH苏黎世就直接打假
  • 新世界首富:斥巨资求永生,TikTok收购案最可能买家,得OpenAI千亿订单
  • 北京/杭州/西雅图内推 | 阿里通义实验室LLM Research团队招聘大模型研究科学家
  • 从Muon到AdaMuon:下一代优化器能否真正取代Adam?
  • EMNLP 2025 | LLM也会“装成人”?对比重写CoPA挑战AI文本检测可信度
  • 博士申请 | 南京大学范琦老师课题组招收26级/27级视频生成/世界模型方向博士生
  • 法天使与零一万物发布法务智能体平台,让AI成为法务部的超级员工
  • 从「对口型」到「会表演」,刚进化的可灵AI数字人,技术公开了
  • 数字生活的原生入口:蚂蚁集团发布AI眼镜全新技术框架gPass
  • OpenVision 2:大道至简的生成式预训练视觉编码器
  • 旗舰手机、AI 拍摄眼镜、Flyme ,魅族 22 「归航」终极生态
  • DeepMind与牛津大学提出LayerLock:用渐进式层冻结实现高效、无崩溃的自监督视觉表征学习
  • 超越GPT-4o,蚂蚁集团与南洋理工大学提出LaV-CoT:首个语言感知的视觉思维链
  • 为什么说现在所有的 AI Agent,都像 3D 打印机?|AI 上新
  • 召回率达99%,牛津大学等开发AI工具助天文学家快准识别超新星,从亿万星海中秒抓宇宙烟火
  • 用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
  • 告别ROS的繁琐, 易用易学的机器人学习系统: 华为诺亚面向机器人学习的开源Python框架
  • 现货来了!火出圈!钉钉首款AI硬件DingTalk A1正式开售
  • 苹果 iOS 26 今日发布,8 大更新;华为小米宇树入选 MIT「聪明公司 50」;中国核电催更《流浪地球 3》
  • 2027万亿视频市场将爆发!AI十年如何重塑内容产业?|新智元十周年峰会
  • GPT-5是口袋博士?诺奖得主哈萨比斯怒怼奥特曼:博士级AI纯属扯淡!
  • 微软用「光」跑AI登上Nature!100倍能效颠覆GPU,华人首席研究员扛鼎
  • 缺钱但不缺洞见:刚刚,陶哲轩揭秘AI如何吞噬数学项目的灵魂!
  • 马斯克深夜挥刀,Grok幕后员工1/3失业!谷歌AI靠人肉堆起,血汗工厂曝光
  • 全景呈现大模型开源技术路线和生态,蚂蚁开源在2025外滩大会发布全新报告
  • 抢先实测美团首个AI Agent,让我体验一把「懒人点餐」的快乐
  • 将KV Cache预算降至1.5%!他们用进化算法把大模型内存占用砍下来了
  • LLaSO 横空出世:逻辑智能推出全球首个完全开源语音大模型框架,定义 LSLM 研究新基准
  • 为这一个Tab键,我愿意单独付费:Cursor用在线强化学习优化代码建议,护城河有了?
  • 小红书智创音频技术团队:SOTA对话生成模型FireRedTTS-2来了,轻松做出AI播客!
  • 大模型碰到真难题了,测了500道,o3 Pro仅通过15%
  • 耗资15000个A100 GPU日!港中文、阿里等发布600万规模T2I推理数据集与基准
  • INFFUS 25 | FS-Diff:一步到位,用扩散模型同时实现多模态图像融合与超分辨率
  • 神经细胞自动机实现目标导向的形态生成,AI在「生命游戏」里玩出反向规则
  • iPhone 17 全系上线拼多多,5099 起;「罗西大战」后续,传「预制菜国标」过审;小米蔚来小鹏抵制「车圈黑公关」
  • 突发!苹果AI大失血:Siri前掌门离职,核心团队被挖角,新功能延期到2026
  • 对Transformer说不!清华刘嘉:2045数字永生降临|新智元十年峰会
  • 急诊室生死逆转!酒后呕吐,GPT-5一眼锁定食管穿孔
  • 周周996,顿顿预制餐!美国AI界00后卷疯了: 住「棺材房」一周工作92小时
  • 学历越高,越怕熬夜!2.3万人10年研究实锤:睡得越晚,智力下降越快
  • Arm拥抱AI:五倍性能,三倍能效
  • Meta开源MobileLLM-R1模型,不到1B参数,用1/10的训练就超越了Qwen3
  • 清华、上海AI Lab等顶级团队发布推理模型RL超全综述,探索通往超级智能之路
  • 快手可灵团队提出MIDAS:压缩比64倍、延迟低于500ms,多模态互动数字人框架实现交互生成新突破
  • 成本不足60美元!开源U-ARM:让机器人模仿学习更亲民的通用遥操作界面
  • 让机器人“大脑”更轻更快:SQAP-VLA首次实现VLA模型量化与剪枝协同加速
  • 数据与AI双引擎驱动智能未来,2025外滩大会论数据进化之道
  • iPhone 17 Air 在华发售延期;罗永浩直播回应西贝;《流浪地球》第三部剧本完稿,共计十五万字|极客早知道
  • 刚刚,谷歌发布71页AI科研报告!6大领域全面超越专家,几小时顶几个月
  • 一夜刷屏!27岁姚顺雨离职OpenAI,清华姚班天才转型做产品经理?
  • 王小川押注下个十年:为人类造医生,为生命建模型|新智元十周年峰会
  • 一刀砍掉90%训练成本!Qwen3-Next用1/10算力练成「长文推理利器」
  • AI意识「觉醒」!图灵得主Bengio重磅发声:AI正接近人类意识临界点
  • 扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
  • 如何为LLM智能体编写工具?Anthropic官方教程来了
  • 腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破
  • 「做笔记」的RAG来了!告别噪声与骨牌效应,EviNote-RAG稳住长链推理
  • KDD 2025最佳论文亚军:参数不同还能共训?异构知识迁移框架HtFLlib全面开源
  • Adam的Update RMS为何总是0.2?噪声模拟到理论近似全讲透
  • 北京/上海内推 | 小红书智能审核算法团队招聘NLP/多模态内容理解算法工程师/实习生
  • 我苦寻的「库乐队」,叫 MiniMax Music 1.5
  • Science Advances | AI for Earth:聆听海洋的「脉搏」,新一代AI大模型精准预测十年气候脉动
  • 外滩大会嘉宾锐评AGI即将“撞墙”,正在向数字与物理世界进化
  • 港科大 X MiniMax:高质量数据、小模型挑战复杂网络搜索难题
  • 为了网罗 AI 创新者,上海搞了场万人科创大赛
  • 蚂蚁集团数字蚂力首批专家级“AI数字员工团队”亮相外滩大会
  • “IIFAA数字卡包”上线支付宝:目前已支持多类身份申领
  • 蚂蚁集团加码AGI等青年人才培育,2025蚂蚁InTech奖在外滩大会揭晓
  • 重塑药物研发,哈佛医学院等开源全新AI模型,用「图神经网络」破解疾病驱动因素多元难题
  • 全球最懂智能体的创业者齐聚外滩大会,未来三年怎么做聊透了
  • 马上上岛|云栖大会「新世代 AI 创想岛」即将揭幕
  • ICRA 2025 | TANGO:机器人告别3D地图,仅靠RGB摄像头实现零样本长距离导航
  • 挑战主流认知!蚂蚁、人大在2025外滩大会发布行业首个原生MoE扩散语言模型
  • 姚顺雨离职OpenAI,「亿元入职腾讯」传闻引爆AI圈,鹅厂辟谣了
  • 全新MoE架构!阿里开源Qwen3-Next,训练成本直降9成
  • 告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式
  • 西贝贾国龙称一定起诉罗永浩;支付宝推出「AI 付」服务;iPhone 17 京东、天猫预订量比上代大增|极客早知道

GPT-5攻入数学圈,证明定理快过博士生?网友热议AI新角色



  新智元报道  

编辑:倾倾
【新智元导读】当GPT-5第一次被写进数学论文,舆论瞬间炸开。有人惊呼「AI 数学家诞生」,有人却冷静提醒:它只是把熟悉的工具快速拼接。于是,一个新的问题被摆到台前:这究竟是科研的加速器,还是博士培养的绊脚石?

9月初,一篇挂在arXiv的论文在学界扔下一颗炸弹——GPT-5被写进了数学研究成果里。

研究者在文中公开写道:GPT-5在他们的实验中完成了一项此前从未解决的数学工作,并将结果直接纳入正式稿件。

这是大型语言模型首次以「定理贡献者」的身份出现在数学研究论文中。

论文所涉及的,正是Malliavin–Stein框架下的一个核心难题。


GPT-5第一次写进数学论文

在数学研究里,「第四矩定理」是一块基础又棘手的拼图。

它最初由Nualart和Peccati提出,用来判断某类随机变量是否收敛到正态分布。

但这个定理长期存在一个「缺口」:

它只能告诉你「会不会收敛」,却没法量化「收敛有多快」。

研究团队选择把这个缺口抛给GPT-5。

他们的问题很直接:在Malliavin–Stein框架下,能否把第四矩定理的「定性收敛」升级成「定量收敛」,给出明确的速度界限?

GPT-5 给出的答案令人意外。它推导出一个全新的收敛速度结论:

 GPT-5推导出的新定理:第四矩定理首次有了明确的收敛速度,被原封不动收进论文

换句话说,它证明了:如果第四矩逐渐逼近高斯分布的数值,那么收敛的速度也能被清晰刻画。

这一结果的意义不只在于解决了一个空白点。

对数学研究者而言,收敛速度往往决定了定理能否真正应用到复杂模型里,比如高维随机场、金融数据的极值分析、甚至物理中的随机过程模拟。

此前只能笼统地说「会收敛」,现在有了定量边界,很多应用才有了可操作性。

更重要的是,这个过程不是研究团队「替GPT-5美化」,而是直接把它的推导纳入正式成果。

这是大型语言模型第一次以「定理贡献者」的身份,进入数学研究论文的正文部分。


不是单挑
而是「教授+AI」的组合拳

外界看到GPT-5被写进论文,很容易联想到「AI能独立解决数学难题」。

但真相远远没有那么简单。

GPT-5 一上来就写出了定理陈述,看似逻辑完整,但在关键环节 Cov(Y², Z²) 的推导上用了错误公式。

如果不被及时发现,这个错误会直接毁掉整个证明。

研究者追问:

Can you check your formula for Cov(Y², Z²) and provide me with the details?

GPT-5乖乖给出细节解释,但仍然错了。

研究者干脆直接指出:

I think you are mistaken in claiming that (p+q)!‖u⊗̃v‖² = p!q!‖u‖²‖v‖².

GPT-5这才承认之前的推理是假的,并调整思路。

在研究者的引导下,它终于写出正确的推导,接着还按照要求把结果整理成完整的论文。

这种反复纠错的过程,让论文作者感叹:与GPT-5合作,就像带一个聪明但毛躁的实习生。

它能快速提出方向、生成证明,但总需要有人类导师盯着,指出错误并让它修正。

Mollick:GPT-5 Pro能做新数学,但必须在教授引导下

这不是AI单挑,而是教授+AI的组合拳。


外界惊呼,内行冷静

当GPT-5被写进论文的消息传开,许多圈外人第一反应是「历史性时刻」。

8月20日,微软研究员Sébastien Bubeck在X上发了一条贴子:

他 GPT-5 Pro去解一个凸优化领域的公开问题。

几分钟内,GPT-5把一个经典界限从1/L1/L1/L提升到了1.5/L1.5/L1.5/L。

听上去像是枯燥的数学符号,为什么会引起如此轰动?

在凸优化里,1/L代表算法能达到的一个收敛速度上限,这个上限直接决定了算法跑得有多快。

研究者们早已习惯把它当作定律,但GPT-5在几分钟内就给出了更紧的界限:1.5/L。

这意味着,如果正确,它等于在数学上「加速」了整个领域里一大类算法。

这条帖子迅速引爆社交媒体,被很多人视为AI数学家时代的开幕时刻。

然而,数学界内部的解读则冷静得多。

优化专家Ernest Ryu的评论道:

GPT-5给出的这个展示主要依赖于一个早已为专家熟知的工具——Nesterov定理……一位有经验的研究人员也能在几个小时内得到等价的结果。

也就是说,在外界看来是「几分钟完成的突破」,在内行眼中其实是「熟悉工具的快速复用」。


是科研加速器,还是博士的绊脚石?

GPT-5被写进论文,看上去像是一台科研加速器,但作者在结尾却写下了不小的担忧。

研究人员发现,GPT-5最擅长的,其实是把已有的工具快速拼接成结果。

技术上没错,可缺少真正的原创性。

如果未来越来越多这样的「拼图式研究」涌入学界,文献可能会被海量的「正确但平庸」的成果淹没,真正有突破性的工作更难脱颖而出。

更需要让人警惕的,是博士生的成长路径。

按照传统节奏,他们要靠反复阅读、尝试、犯错,慢慢培养研究直觉。

但如果AI可以随时生成技术正确的推导,这些至关重要的试错环节就会被跳过。论文里写得很直白:

如果学生过度依赖人工智能……他们可能会失去发展这些基本技能的必要机会。

这种担忧并非杞人忧天。

OpenAI研究员Noam Brown也在公开场合提醒:

换句话说,GPT-5已经能产出新定理,但它会把科研变成「快餐流水线」,还是推动人类进入新一轮知识爆炸?答案没有人敢保证。

从Bubeck的凸优化案例,到Malliavin–Stein定理的定量化突破,GPT-5已经不再是实验室里的玩具,而是真正出现在学术论文的正文里。

它能生成定理,推导证明,甚至在教授引导下完成整套研究流程。

但问题也随之而来:当「正确但平庸」的结果可以大规模复制,原创突破会不会被淹没?

当博士生最重要的试错与摸索环节被 AI跳过,学术训练会不会失去根基?

未来几年,AI 在科研中扮演的角色,也许会比任何人想象得更快、更激烈地发生变化。

所以真正的问题是:当AI已经能写进论文,人类研究者还要写什么?

参考资料:
https://x.com/polynoamial/status/1964464373516427491
https://x.com/emollick/status/1964447221853966775
https://x.com/ns123abc/status/1964724813940842934
https://x.com/SebastienBubeck/status/1958198661139009862
https://arxiv.org/abs/2509.03065


<br>


    <a class="media_tool_meta meta_primary" href="http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&amp;mid=2652628774&amp;idx=2&amp;sn=f079d8f89009c7acfcb27a1f3da4c578&amp;chksm=f0a43f028fc22eeca040349aaf7f08ef8211dea8511845a5c7f3a274ae816982c030cdd84177&amp;scene=0#rd"  target="_blank">文章原文</a>
    <br>




<img alt="" class="" height="1px" src="https://images.weserv.nl/?url=http://www.jintiankansha.me/rss_static/83671/kJHoLwDhb2&amp;maxage=1y"  width="1px"></div></div></body></html>

联系我们