动态列表

  • GPT-5攻入数学圈,证明定理快过博士生?网友热议AI新角色
  • 阿里王牌Agent横扫SOTA,全栈开源力压OpenAI!博士级难题一键搞定
  • ChatGPT负责人深度复盘,爆4o复活内幕!过快下线是失误,将迭代模型人格
  • 全球首个AI基因组诞生,35亿年生命代码重编程!生物学迎「ChatGPT时刻」
  • 芯片大地震,黄仁勋355亿入股!英特尔要为老黄造CPU,股价狂飙30%
  • 科大讯飞发布面向东盟的多语言大模型及系列产品,布局中国—东盟AI生态大未来
  • Nature | 20年后你会患上哪些疾病?AI准确预测超1000种疾病患病风险,助力预防
  • 我们还是低估了英伟达
  • 谁在拖慢你的RL?别怪显卡,错的可能是你的PG-loss
  • ICCV 2025 | Gap即力量!挖掘模态间隔潜力,MG-CLIP实现持续学习SOTA
  • 北京内推 | 字节跳动国际电商团队招聘大模型方向算法实习生
  • OneSearch,揭开快手电商搜索「一步到位」的秘技
  • 17.38 万的大六座 SUV,吉利用银河 M9 敲碎了友商的心
  • 刚刚,OpenAI在ICPC 2025编程赛上满分登顶,Gemini也达到金牌水平
  • 从一个公众号智能体说起:好用的Agent,究竟需要什么?
  • B站出海的强有力支柱:最新开源文本转语音模型IndexTTS-2.0标志零样本TTS进入双维度时代
  • 腾讯企点营销云发布Magic Agent,营销工具全面AI化
  • 带屏 AI 眼镜登场!Meta「眼镜全家桶」炸街了
  • 通义DeepResearch震撼发布!性能比肩OpenAI,模型、框架、方案完全开源
  • 让机器人「不只是走路」,Nav-R1引领带推理的导航新时代
  • 刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
  • 腾讯 AI 的新叙事
  • 传小米 YU7 新车型曝光纽北;李飞飞放出 3D AI 新成果; 49.2%,火山引擎大模型调用份额占半壁江山
  • 小扎豪掷143亿,却换不来AI燃料!数据之争下半场,中国冲出一匹黑马
  • 终结数据荒!智源开源首个Deep Research数据合成框架InfoSeek
  • 我用一张照片,生成了一个能走进去的世界
  • 奥特曼爆料:GPT-5重构彻底一切!一人顶五个团队
  • 最新实测GPT-5-Codex:前端能力碾压,复杂项目轻松搞定,Claude可以扔了!
  • TPAMI 2025 | 弱监督与自监督引领自动驾驶运动预测新范式,用场景分割“脑补”运动,仅需0.01%标注,性能媲美监督方法
  • 南开大学等提出RAM++:从关注“降质”到关注“内容”,实现鲁棒的全能图像恢复
  • 不改参数不重训!CARVE一招纠偏,对比注意力让视觉模型精准聚焦
  • ICML 2025 | AI福尔摩斯来了!LLaVA-ReID多轮发问,行人重识别一步步锁定
  • 博士申请 | 新加坡国立大学CoSTA Lab招收人工智能全奖博士/RA/实习生
  • 清华新作颠覆CoT!ParaThinker并行思考,终结单链推理天花板
  • 没想到,音频大模型开源最彻底的,居然是小红书
  • 6.1B打平40B Dense模型,蚂蚁开源最新MoE模型Ling-flash-2.0
  • 「AI助手」真来了?谷歌牵头推进Agent支付协议AP2
  • 腾讯AI Lab首创RL框架Parallel-R1,教大模型学会「并行思维」
  • 阿里开源通义DeepResearch,性能超OpenAI、DeepSeek旗舰模型
  • 华为发布4+10+N中小企业智能化方案,打通迈向智能世界「最后一公里」
  • LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
  • Cell丨谷歌AI co-scientist联合帝国理工揭开谜团:提出并验证细菌基因转移机制假说
  • 华为首款旅行车 1 小时订单破 5000,余承东再次「封神」?
  • 腾讯、复旦、上海创智学院提出SwiftVideo:首个Continuous-time视频蒸馏加速框架,实现业界最快最高清视频生成
  • 刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
  • 突破单链思考上限,清华团队提出原生「并行思考」scale范式
  • 刘强东喊话王兴:尊重兴哥,不应是仇人;美机器人公司估值暴涨至390亿美元;iOS 微信支持聊天发实况图|极客早知道
  • 7亿人每周狂发180亿条消息!OpenAI首次揭秘ChatGPT最火用途
  • LLM会梦到AI智能体吗?不,是睡着了也要加班
  • 一周休4天!老黄、盖茨站台,网友炸锅:是AI福利,还是裁员信号?
  • AI精神病爆发!沉迷ChatGPT把人「宠」出病,KCL心理学家实锤
  • 谷歌DeepMind「粪坑淘金」全新方法,暗网毒数据也能训出善良模型
  • 北京内推 | 微软Copilot算法团队招聘大模型推理方向研究型实习生
  • EMNLP 2025 | 跨风格不误判!MoSEs用职业写作风格建模,检测AI文本更稳更准
  • 一招打破瓶颈!HyperTree超树规划:AI掌握层级化推理,复杂任务全面突破
  • 高阶程序,让AI从技术可行到商业可信的最后一公里
  • 网络顶会获奖!华为提出端网协同RDMA传输架构,解决大规模AI集群网络可扩展性问题
  • 具身智能能力狂飙,安全却严重滞后?首个安全可信EAI框架与路线图出炉!
  • 在端侧 AI 时代正式到来之前,联想想先做好硬件「杀手锏」
  • 火山引擎发布PromptPilot,推动大模型应用高效落地
  • 在「外滩大会·具身智能:从泛化到行动,重塑产业未来」上,这些大牛都说了什么?
  • 国内首个!夸克公开覆盖全阶段医师考试的健康大模型测试集
  • 蚂蚁百灵开源轻量级MoE语言模型Ling-mini-2.0,1.4B激活性能比肩大规模模型
  • 浙大侯廷军团队联合IIT等发布系统综述:全景解析机器学习加持下的「增强采样」方法
  • BMVC 2025 | 无需源数据,Grad-CL如何利用梯度引导实现精准的眼底图像分割?
  • 斯坦福大学提出PSI:一种通过概率结构集成,从数据中学习可控、可灵活提示的世界模型的新系统
  • 谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
  • 从少样本到千样本!MachineLearningLM给大模型上下文学习装上「机器学习引擎」
  • 最新披露,骑手收入真实情况揭晓
  • 刚刚,OpenAI发布GPT-5-Codex:可独立工作超7小时,还能审查、重构大型项目
  • 多模态BUG修复新SOTA:慕尼黑工大GUIRepair登上SWE-bench Multimodal榜单第一
  • 15年大佬深夜痛哭半小时!氛围编程巨坑曝光,95%程序员沦为「AI保姆」
  • 面试不是考试,是表演!新晋OpenAI员工:重磅揭秘顶级AI岗通关密码
  • GPT-5惨遭零分打脸,顶级AI全军覆没!奥特曼AI博士级能力神话破灭
  • 反转!LeCun刚转发「全球最快开源推理模型」,ETH苏黎世就直接打假
  • 新世界首富:斥巨资求永生,TikTok收购案最可能买家,得OpenAI千亿订单
  • 北京/杭州/西雅图内推 | 阿里通义实验室LLM Research团队招聘大模型研究科学家
  • 从Muon到AdaMuon:下一代优化器能否真正取代Adam?
  • EMNLP 2025 | LLM也会“装成人”?对比重写CoPA挑战AI文本检测可信度
  • 博士申请 | 南京大学范琦老师课题组招收26级/27级视频生成/世界模型方向博士生
  • 法天使与零一万物发布法务智能体平台,让AI成为法务部的超级员工
  • 从「对口型」到「会表演」,刚进化的可灵AI数字人,技术公开了
  • 数字生活的原生入口:蚂蚁集团发布AI眼镜全新技术框架gPass
  • OpenVision 2:大道至简的生成式预训练视觉编码器
  • 旗舰手机、AI 拍摄眼镜、Flyme ,魅族 22 「归航」终极生态
  • DeepMind与牛津大学提出LayerLock:用渐进式层冻结实现高效、无崩溃的自监督视觉表征学习
  • 超越GPT-4o,蚂蚁集团与南洋理工大学提出LaV-CoT:首个语言感知的视觉思维链
  • 为什么说现在所有的 AI Agent,都像 3D 打印机?|AI 上新
  • 召回率达99%,牛津大学等开发AI工具助天文学家快准识别超新星,从亿万星海中秒抓宇宙烟火
  • 用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
  • 告别ROS的繁琐, 易用易学的机器人学习系统: 华为诺亚面向机器人学习的开源Python框架
  • 现货来了!火出圈!钉钉首款AI硬件DingTalk A1正式开售
  • 苹果 iOS 26 今日发布,8 大更新;华为小米宇树入选 MIT「聪明公司 50」;中国核电催更《流浪地球 3》
  • 2027万亿视频市场将爆发!AI十年如何重塑内容产业?|新智元十周年峰会
  • GPT-5是口袋博士?诺奖得主哈萨比斯怒怼奥特曼:博士级AI纯属扯淡!
  • 微软用「光」跑AI登上Nature!100倍能效颠覆GPU,华人首席研究员扛鼎
  • 缺钱但不缺洞见:刚刚,陶哲轩揭秘AI如何吞噬数学项目的灵魂!
  • 马斯克深夜挥刀,Grok幕后员工1/3失业!谷歌AI靠人肉堆起,血汗工厂曝光
  • 全景呈现大模型开源技术路线和生态,蚂蚁开源在2025外滩大会发布全新报告
  • 抢先实测美团首个AI Agent,让我体验一把「懒人点餐」的快乐
  • 将KV Cache预算降至1.5%!他们用进化算法把大模型内存占用砍下来了
  • LLaSO 横空出世:逻辑智能推出全球首个完全开源语音大模型框架,定义 LSLM 研究新基准
  • 为这一个Tab键,我愿意单独付费:Cursor用在线强化学习优化代码建议,护城河有了?
  • 小红书智创音频技术团队:SOTA对话生成模型FireRedTTS-2来了,轻松做出AI播客!
  • 大模型碰到真难题了,测了500道,o3 Pro仅通过15%
  • 耗资15000个A100 GPU日!港中文、阿里等发布600万规模T2I推理数据集与基准
  • INFFUS 25 | FS-Diff:一步到位,用扩散模型同时实现多模态图像融合与超分辨率
  • 神经细胞自动机实现目标导向的形态生成,AI在「生命游戏」里玩出反向规则
  • iPhone 17 全系上线拼多多,5099 起;「罗西大战」后续,传「预制菜国标」过审;小米蔚来小鹏抵制「车圈黑公关」
  • 突发!苹果AI大失血:Siri前掌门离职,核心团队被挖角,新功能延期到2026
  • 对Transformer说不!清华刘嘉:2045数字永生降临|新智元十年峰会
  • 急诊室生死逆转!酒后呕吐,GPT-5一眼锁定食管穿孔
  • 周周996,顿顿预制餐!美国AI界00后卷疯了: 住「棺材房」一周工作92小时
  • 学历越高,越怕熬夜!2.3万人10年研究实锤:睡得越晚,智力下降越快
  • Arm拥抱AI:五倍性能,三倍能效
  • Meta开源MobileLLM-R1模型,不到1B参数,用1/10的训练就超越了Qwen3
  • 清华、上海AI Lab等顶级团队发布推理模型RL超全综述,探索通往超级智能之路
  • 快手可灵团队提出MIDAS:压缩比64倍、延迟低于500ms,多模态互动数字人框架实现交互生成新突破
  • 成本不足60美元!开源U-ARM:让机器人模仿学习更亲民的通用遥操作界面
  • 让机器人“大脑”更轻更快:SQAP-VLA首次实现VLA模型量化与剪枝协同加速
  • 数据与AI双引擎驱动智能未来,2025外滩大会论数据进化之道
  • iPhone 17 Air 在华发售延期;罗永浩直播回应西贝;《流浪地球》第三部剧本完稿,共计十五万字|极客早知道
  • 刚刚,谷歌发布71页AI科研报告!6大领域全面超越专家,几小时顶几个月
  • 一夜刷屏!27岁姚顺雨离职OpenAI,清华姚班天才转型做产品经理?
  • 王小川押注下个十年:为人类造医生,为生命建模型|新智元十周年峰会
  • 一刀砍掉90%训练成本!Qwen3-Next用1/10算力练成「长文推理利器」
  • AI意识「觉醒」!图灵得主Bengio重磅发声:AI正接近人类意识临界点
  • 扩散语言模型也有MoE版本了!蚂蚁&人大从头训练LLaDA-MoE,即将完全开源
  • 如何为LLM智能体编写工具?Anthropic官方教程来了
  • 腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破
  • 「做笔记」的RAG来了!告别噪声与骨牌效应,EviNote-RAG稳住长链推理
  • KDD 2025最佳论文亚军:参数不同还能共训?异构知识迁移框架HtFLlib全面开源
  • Adam的Update RMS为何总是0.2?噪声模拟到理论近似全讲透
  • 北京/上海内推 | 小红书智能审核算法团队招聘NLP/多模态内容理解算法工程师/实习生
  • 我苦寻的「库乐队」,叫 MiniMax Music 1.5
  • Science Advances | AI for Earth:聆听海洋的「脉搏」,新一代AI大模型精准预测十年气候脉动
  • 外滩大会嘉宾锐评AGI即将“撞墙”,正在向数字与物理世界进化
  • 港科大 X MiniMax:高质量数据、小模型挑战复杂网络搜索难题
  • 为了网罗 AI 创新者,上海搞了场万人科创大赛
  • 蚂蚁集团数字蚂力首批专家级“AI数字员工团队”亮相外滩大会
  • “IIFAA数字卡包”上线支付宝:目前已支持多类身份申领
  • 蚂蚁集团加码AGI等青年人才培育,2025蚂蚁InTech奖在外滩大会揭晓
  • 重塑药物研发,哈佛医学院等开源全新AI模型,用「图神经网络」破解疾病驱动因素多元难题
  • 全球最懂智能体的创业者齐聚外滩大会,未来三年怎么做聊透了
  • 马上上岛|云栖大会「新世代 AI 创想岛」即将揭幕
  • ICRA 2025 | TANGO:机器人告别3D地图,仅靠RGB摄像头实现零样本长距离导航
  • 挑战主流认知!蚂蚁、人大在2025外滩大会发布行业首个原生MoE扩散语言模型
  • 姚顺雨离职OpenAI,「亿元入职腾讯」传闻引爆AI圈,鹅厂辟谣了
  • 全新MoE架构!阿里开源Qwen3-Next,训练成本直降9成
  • 告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式
  • 西贝贾国龙称一定起诉罗永浩;支付宝推出「AI 付」服务;iPhone 17 京东、天猫预订量比上代大增|极客早知道

少样本不够看?给LLM装上“学习引擎”,上下文学习迈入千样本时代

让你更懂AI的 2025-09-18 14:23 北京

上下文学习也能越喂越强

尽管大型语言模型(LLM)拥有广泛的世界知识和强大的推理能力,被广泛视为优秀的少样本学习者,但在处理需要大量示例的上下文学习(ICL)时仍存在明显局限。

已有工作表明,即使提供多达上百甚至上千条示例,LLM 仍难以从中有效学习规律,其表现往往很快进入平台期,甚至对示例的顺序、标签偏差等较为敏感。

在利用上下文学习解决新任务时,LLM 往往更依赖于自身的强先验以及示例的表面特征,而难以真正挖掘出示例中潜在的因果机制或统计依赖。

这项名为 MachineLearningLM 的新研究突破了这一瓶颈。该研究提出了一种轻量且可移植的「继续预训练」框架,无需下游微调即可直接通过上下文学习上千条示例。

在金融、健康、生物信息、物理等等多个领域的二分类 / 多分类任务中的准确率显著超越基准模型(Qwen-2.5-7B-Instruct)以及最新发布的 GPT-5-mini。

相比于已有的用于表格数据的机器学习方法,MachineLearningLM 几乎完全保留了 LLM 通用能力,这意味着它可以无缝集成到更复杂的对话工作流中。

论文标题:

MachineLearningLM: Scaling Many-shot In-context Learning via Continued Pretraining

论文链接:

https://arxiv.org/abs/2509.06806

代码链接:

https://github.com/HaoAreYuDong/MachineLearningLM

模型和数据集链接:

https://huggingface.co/MachineLearningLM

图片

核心创新一:百万级合成任务「授人以渔」

研究团队旨在赋予 LLM 一种「举一反三」的元能力 —— 不依赖对真实任务数据的机械记忆,而是通过海量且多样化的合成任务,从根本上训练模型在大量上下文示例中挖掘规律并进行预测的能力。

传统的指令微调方法通常基于有限规模(约为千数量级)的真实任务数据,这在很大程度上限制了模型向新任务的泛化能力。与之相比,MachineLearningLM 构建了一个超过 300 万合成任务的大规模预训练语料库。

任务生成器基于结构因果模型(Structural Causal Model, SCM)来采样生成二分类及多分类任务。SCM 通过有向无环图(DAG)和结构方程(采用神经网络与树模型实现)明确定义变量间的因果关系,能够精确控制特征的边际分布、类型(如数值型或类别型)以及标签生成机制。

该方法确保预训练数据与下游真实评估集没有任何重叠,从而保证评估过程对模型泛化能力的检验具备充分公平性。同时,通过控制示例数量从数个到 1024 个不等,该机制能够专门训练模型处理「多示例」场景的推理能力。

图片

核心创新二:随机森林模型「循循善诱」

在海量合成任务上直接训练大型语言模型(LLM)容易因任务质量不一致 —— 例如存在信号微弱或类别极度不平衡等情况 —— 而导致训练崩溃或陷入局部最优。

为解决这一问题,本研究引入随机森林(Random Forest)模型,利用其强大且稳健的建模能力,设计了如下两级过滤机制:

样本级共识过滤(热身训练阶段):在热身训练中,为每个合成任务训练一个随机森林模型,并引导 LLM 学习模仿其预测行为。具体而言,仅保留随机森林预测结果与真实标签一致的那些样本用于 LLM 的训练。

该方法通过提供清晰且高置信度的监督信号,使 LLM 初步建立起准确的上下文建模能力,尤其是数值建模能力,为后续过渡到自主上下文学习奠定基础。

任务级过滤(全程训练阶段):在整个训练过程中,除为每个任务构建随机森林模型外,还引入保守随机基线(如随机猜测或坍塌到多数类的预测方法),以剔除那些随机森林表现未显著优于基线的无效任务。

评估指标包括机会校正一致性、失衡鲁棒准确率、宏平均准确率以及避免预测坍塌等指标。

为何选择随机森林?除了强大且稳健的建模能力,随机森林具有高度透明的决策过程,可分解为清晰的规则路径与特征重要性评估,这种可解释性与 LLM 的思维链(Chain-of-Thought, CoT)推理模式天然契合,有助于后续推进思维链预测及解释性预测任务。

同时,随机森林能够提供预测置信度,为进一步减少 LLM 幻觉问题引入置信度机制提供了可能。

图片

核心创新三:高效上下文示例编码「多维扩容」

在大模型时代,如何高效地在上下文学习中处理海量表格数据,是一项重要挑战。

传统的「自然语言描述」方式(例如:「收入是 29370,职业是博士,年增长率是 - 12.34% → 标签:1」),占用 token 多、计算开销大,严重限制了实际应用中可支持的示例数量。

数值型特征经分词器处理时,一个小数可能被拆成多个 token,既浪费长度又可能导致数值比较错误,如模型容易误认为「1.11」(1|.|11)比「1.9」(1|.|9)大。

为此,作者提出了三项核心优化策略,显著提升了上下文学习的数据容纳能力与推理效率:

告别「小作文」,样本用表格来组织: SpreadsheetLLM 等研究已广泛证明,LLM 能很好地理解结构化表格,因此作者放弃相关工作将结构化数据展开成冗长自然语句的做法,转而采用紧凑的表格编码格式。

把数字「打包」成整数,告别 token 碎片化:先遵循机器学习工程的常见操作,将所有数值基于训练集数据分布逐列进行 z-score 标准化;然后将 z-norm 下 ±4.17(绝大多数情况)的浮点数区间整体线性映射到 [0, 999] 的整数区间。

这样,每个数值在 GPT 和 LLaMA 3 的词表中仅需 1 个 token 表示(Qwen 分词器也仅需 1 到 3 个 token),既节省空间,还避免了小数点和正负号单独切词带来的数值理解错误。该流程只是改进了传统机器学习中的数值标准化,而没有改变 LLM 原生分词器,因此模型的数值推理能力可以全部继承。

推理也要「团购」:序列级批量预测——传统上下文学习一次只处理一个查询,在多样本学习时效率极低。作者将多个查询(如 50 条)拼成一条序列,统一前向推理,一次性输出所有预测结果。这不仅大幅提升推理速度,还能在训练阶段提高自回归稳定性。

图片

惊艳效果:多项能力突破

MachineLearningLM 的继续预训练方案无需改变模型架构或分词器,只使用了 Qwen2.5-7B 基座模型和低秩适配(LoRA rank=8)这种轻量级配置,MachineLearningLM 展现出了前所未有的上下文样本利用能力:

「千示例」上下文学习:模型性能随着提供的示例数量增加而持续稳定提升,从 8 条示例到 1024 条示例,准确率单调增长。这样的上下文样本效率是已有 LLM 都难以做到的。

远超 GPT-5-mini 等强大基准模型:在金融、生物信息、物理信号和医疗健康等领域的表格分类任务上,其纯上下文学习的准确率平均超越 GPT-5-mini 等强大基准模型约 13 到 16 个百分点。

在无需任何任务特定训练的情况下,其准确率已能达到与需要任务级参数更新的随机森林模型相差无几的水平(平均相对差距在 2% 以内),并显著优于 K 近邻(kNN)算法。

通用能力无损:最关键的是,注入 ML 能力后,模型原有的对话、知识和推理能力几乎完好无损。

在 MMLU 基准测试中,其零样本准确率达 73.2%,50 样本设置下达 75.4%,与基准通用 LLM(Qwen-2.5-7B-Instruct)持平,甚至在特定领域(如统计和物理)有一定提升,这意味着它可以无缝集成到更复杂的对话工作流中。

实证研究表明,MachineLearningLM 能够同时处理数值特征与自然语言描述,无需像传统方法那样对文本进行分桶或转换为嵌入向量,实现了真正的异构(多模态)输入推理。

然而,该模型仍存在一定局限,例如在面对非独立同分布的时间序列数据以及类别数量极其庞大的数据集时,性能尚有待提升,这也为后续研究指明了改进方向。

图片

应用领域

基于大幅提升的多样本上下文学习和数值建模能力,MachineLearningLM 有望在金融、医疗健康与科学计算等广泛场景中扩展大型语言模型的实际应用边界。

图片

未来展望

MachineLearningLM 为未来研究开辟了多个充满潜力的方向。以下是论文里列出的几个重点方向:

超越文本与数字:合成多模态分类任务,使 MachineLearningLM 能够直接在海量合成数据上练习处理异构信号的多模态上下文预测,这依然可以建立在表格预测的框架之上,例如利用 HTML 表格来嵌入图像。

通过系统优化突破上下文长度限制:例如采用张量 / 流水线并行、高效内存注意力与 KV 缓存等系统优化技术。

不确定性预测 (Uncertainty):预测的同时输出置信度(比如利用随机森林的置信度做热身训练),以减少模型 OpenAI 近期提出的由于缺乏承认不确定性(Honesty about uncertainty)引发的幻觉(Hallucination)。

提升可解释性 (Interpretability):叙事蒸馏与推理增强学习,既可以利用底层的 SCM(变量、关系与机制)作为预测任务的辅助目标,也可以从集成模型中蒸馏规则,形成紧凑、人类可读的推理链条。

集成检索增强方法(RAG):为 MachineLearningLM 集成一个检索模块,使其能在预训练和推理时动态注入最相关的示例。

赋能智能体(Agent):与 Agent 记忆机制(Memory)深度融合,提升其在复杂环境中利用多样本的上下文学习,赋予智能体强大的从大量经验记忆中挖掘和学习的能力。

关于作者:

本文作者:董浩宇(中国科学院大学)、张鹏昆(华南理工大学)、陆明哲(中国科学院大学)、沈言祯(斯坦福大学)、柯国霖(个人贡献者)

董浩宇:中国科学院大学在读博士(预计 2025 年底毕业)。研究方向涵盖表格与半结构化数据理解与推理、LLM 后训练与强化学习、数据集与评测基准等。曾提出 SpreadsheetLLM 并获得 Hugging Face Paper of the Day、联合发起并持续共同组织 NeurIPS 2022–2024 表格表征学习(TRL)系列研讨会,推动表格智能社区发展。

更多阅读

#投 稿 通 道#

让你的文字被更多人看到

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

阅读原文

跳转微信打开

联系我们