动态列表

  • 史上最大升级!7亿周活ChatGPT逼宫,谷歌慌了,这次要把AI整个塞进Chrome
  • 谷歌AI或摘千禧年大奖!华人博士破解百年数学难题,首次捕获奇点
  • 登顶多模态推理榜MMMU!UCSD新方法超越GPT-5、Gemini
  • DeepSeek-R1登顶Nature,8位专家严审通过, 大模型「交卷时刻」来了
  • 18岁天才少年,登上Nature封面!
  • 不要ViT也不要扩散!OneCAT甩掉编码器,统一多模态自回归模型来了
  • ICML 2025 | 乱写Prompt更给力?删几个Token,上下文学习立刻“反向觉醒”
  • 北京内推 | 腾讯混元大模型X团队招聘大模型/强化学习方向“青云计划”实习生
  • 扩散大语言模型也能飞?DPad免训练加速61倍,全局规划照样稳
  • 华为超节点:用「一台机器」的逻辑,驱动AI万卡集群
  • 5555被拒稿,AC接收但PC强拒,NeurIPS揭榜引争议
  • 超强开源模型Qwen3、DeepSeek-V3.1,都被云计算一哥「收」了
  • 攻克大模型训推差异难题,蚂蚁开源新一代推理模型Ring-flash-2.0
  • 给大模型「精准手术」:美团智能客服提出逆向学习技术精准纠偏,风险控制提升38%
  • 阿联酋大学CVLab IEEE Fellow团队招收2026春季/秋季全奖博士生
  • Meta新作SyncSeal:用深度学习“封印”同步信息,让数字水印不再怕裁剪和旋转
  • 千禧年大奖难题有望突破?AI为流体动力学提供新思路
  • 生物学迎来「ChatGPT时刻」:Evo构建首个AI生成的「基因组」,开启生成式基因设计时代
  • 英伟达50亿美元入股英特尔,将发布CPU+GPU合体芯片,大结局来了?
  • 理解帮助生成?RecA自监督训练让统一多模态模型直升SOTA
  • 投50亿美元,英伟达联手英特尔;谷歌将Gemini加入浏览器;网约车司机平均月入过万
  • GPT-5攻入数学圈,证明定理快过博士生?网友热议AI新角色
  • 阿里王牌Agent横扫SOTA,全栈开源力压OpenAI!博士级难题一键搞定
  • ChatGPT负责人深度复盘,爆4o复活内幕!过快下线是失误,将迭代模型人格
  • 全球首个AI基因组诞生,35亿年生命代码重编程!生物学迎「ChatGPT时刻」
  • 芯片大地震,黄仁勋355亿入股!英特尔要为老黄造CPU,股价狂飙30%
  • 新思科技中国30周年,引领AI智能体工程师重塑芯片设计范式
  • 科大讯飞发布面向东盟的多语言大模型及系列产品,布局中国—东盟AI生态大未来
  • Nature | 20年后你会患上哪些疾病?AI准确预测超1000种疾病患病风险,助力预防
  • 我们还是低估了英伟达
  • ICCV 2025 | Gap即力量!挖掘模态间隔潜力,MG-CLIP实现持续学习SOTA
  • 少样本不够看?给LLM装上“学习引擎”,上下文学习迈入千样本时代
  • 北京内推 | 字节跳动国际电商团队招聘大模型方向算法实习生
  • 谁在拖慢你的RL?别怪显卡,错的可能是你的PG-loss
  • OneSearch,揭开快手电商搜索「一步到位」的秘技
  • 17.38 万的大六座 SUV,吉利用银河 M9 敲碎了友商的心
  • 刚刚,OpenAI在ICPC 2025编程赛上满分登顶,Gemini也达到金牌水平
  • 从一个公众号智能体说起:好用的Agent,究竟需要什么?
  • B站出海的强有力支柱:最新开源文本转语音模型IndexTTS-2.0标志零样本TTS进入双维度时代
  • 腾讯企点营销云发布Magic Agent,营销工具全面AI化
  • 带屏 AI 眼镜登场!Meta「眼镜全家桶」炸街了
  • 通义DeepResearch震撼发布!性能比肩OpenAI,模型、框架、方案完全开源
  • 让机器人「不只是走路」,Nav-R1引领带推理的导航新时代
  • 刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
  • 腾讯 AI 的新叙事
  • 传小米 YU7 新车型曝光纽北;李飞飞放出 3D AI 新成果; 49.2%,火山引擎大模型调用份额占半壁江山
  • 小扎豪掷143亿,却换不来AI燃料!数据之争下半场,中国冲出一匹黑马
  • 终结数据荒!智源开源首个Deep Research数据合成框架InfoSeek
  • 我用一张照片,生成了一个能走进去的世界
  • 奥特曼爆料:GPT-5重构彻底一切!一人顶五个团队
  • 最新实测GPT-5-Codex:前端能力碾压,复杂项目轻松搞定,Claude可以扔了!
  • TPAMI 2025 | 弱监督与自监督引领自动驾驶运动预测新范式,用场景分割“脑补”运动,仅需0.01%标注,性能媲美监督方法
  • 南开大学等提出RAM++:从关注“降质”到关注“内容”,实现鲁棒的全能图像恢复
  • 不改参数不重训!CARVE一招纠偏,对比注意力让视觉模型精准聚焦
  • 清华新作颠覆CoT!ParaThinker并行思考,终结单链推理天花板
  • 博士申请 | 新加坡国立大学CoSTA Lab招收人工智能全奖博士/RA/实习生
  • ICML 2025 | AI福尔摩斯来了!LLaVA-ReID多轮发问,行人重识别一步步锁定
  • 没想到,音频大模型开源最彻底的,居然是小红书
  • 6.1B打平40B Dense模型,蚂蚁开源最新MoE模型Ling-flash-2.0
  • 「AI助手」真来了?谷歌牵头推进Agent支付协议AP2
  • 腾讯AI Lab首创RL框架Parallel-R1,教大模型学会「并行思维」
  • 阿里开源通义DeepResearch,性能超OpenAI、DeepSeek旗舰模型
  • 华为发布4+10+N中小企业智能化方案,打通迈向智能世界「最后一公里」
  • LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
  • Cell丨谷歌AI co-scientist联合帝国理工揭开谜团:提出并验证细菌基因转移机制假说
  • 华为首款旅行车 1 小时订单破 5000,余承东再次「封神」?
  • 腾讯、复旦、上海创智学院提出SwiftVideo:首个Continuous-time视频蒸馏加速框架,实现业界最快最高清视频生成
  • 刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
  • 突破单链思考上限,清华团队提出原生「并行思考」scale范式
  • 刘强东喊话王兴:尊重兴哥,不应是仇人;美机器人公司估值暴涨至390亿美元;iOS 微信支持聊天发实况图|极客早知道
  • 7亿人每周狂发180亿条消息!OpenAI首次揭秘ChatGPT最火用途
  • LLM会梦到AI智能体吗?不,是睡着了也要加班
  • 一周休4天!老黄、盖茨站台,网友炸锅:是AI福利,还是裁员信号?
  • AI精神病爆发!沉迷ChatGPT把人「宠」出病,KCL心理学家实锤
  • 谷歌DeepMind「粪坑淘金」全新方法,暗网毒数据也能训出善良模型
  • EMNLP 2025 | 跨风格不误判!MoSEs用职业写作风格建模,检测AI文本更稳更准
  • 北京内推 | 微软Copilot算法团队招聘大模型推理方向研究型实习生
  • 一招打破瓶颈!HyperTree超树规划:AI掌握层级化推理,复杂任务全面突破
  • 高阶程序,让AI从技术可行到商业可信的最后一公里
  • 网络顶会获奖!华为提出端网协同RDMA传输架构,解决大规模AI集群网络可扩展性问题
  • 具身智能能力狂飙,安全却严重滞后?首个安全可信EAI框架与路线图出炉!
  • 在端侧 AI 时代正式到来之前,联想想先做好硬件「杀手锏」
  • 火山引擎发布PromptPilot,推动大模型应用高效落地
  • 在「外滩大会·具身智能:从泛化到行动,重塑产业未来」上,这些大牛都说了什么?
  • 国内首个!夸克公开覆盖全阶段医师考试的健康大模型测试集
  • 蚂蚁百灵开源轻量级MoE语言模型Ling-mini-2.0,1.4B激活性能比肩大规模模型
  • 浙大侯廷军团队联合IIT等发布系统综述:全景解析机器学习加持下的「增强采样」方法
  • 斯坦福大学提出PSI:一种通过概率结构集成,从数据中学习可控、可灵活提示的世界模型的新系统
  • BMVC 2025 | 无需源数据,Grad-CL如何利用梯度引导实现精准的眼底图像分割?
  • 谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
  • 从少样本到千样本!MachineLearningLM给大模型上下文学习装上「机器学习引擎」
  • 最新披露,骑手收入真实情况揭晓
  • 刚刚,OpenAI发布GPT-5-Codex:可独立工作超7小时,还能审查、重构大型项目
  • 多模态BUG修复新SOTA:慕尼黑工大GUIRepair登上SWE-bench Multimodal榜单第一
  • 15年大佬深夜痛哭半小时!氛围编程巨坑曝光,95%程序员沦为「AI保姆」
  • 面试不是考试,是表演!新晋OpenAI员工:重磅揭秘顶级AI岗通关密码
  • GPT-5惨遭零分打脸,顶级AI全军覆没!奥特曼AI博士级能力神话破灭
  • 反转!LeCun刚转发「全球最快开源推理模型」,ETH苏黎世就直接打假
  • 新世界首富:斥巨资求永生,TikTok收购案最可能买家,得OpenAI千亿订单
  • 博士申请 | 南京大学范琦老师课题组招收26级/27级视频生成/世界模型方向博士生
  • EMNLP 2025 | LLM也会“装成人”?对比重写CoPA挑战AI文本检测可信度
  • 北京/杭州/西雅图内推 | 阿里通义实验室LLM Research团队招聘大模型研究科学家
  • 从Muon到AdaMuon:下一代优化器能否真正取代Adam?
  • 法天使与零一万物发布法务智能体平台,让AI成为法务部的超级员工
  • 从「对口型」到「会表演」,刚进化的可灵AI数字人,技术公开了
  • 数字生活的原生入口:蚂蚁集团发布AI眼镜全新技术框架gPass
  • OpenVision 2:大道至简的生成式预训练视觉编码器
  • 旗舰手机、AI 拍摄眼镜、Flyme ,魅族 22 「归航」终极生态
  • 超越GPT-4o,蚂蚁集团与南洋理工大学提出LaV-CoT:首个语言感知的视觉思维链
  • DeepMind与牛津大学提出LayerLock:用渐进式层冻结实现高效、无崩溃的自监督视觉表征学习
  • 为什么说现在所有的 AI Agent,都像 3D 打印机?|AI 上新
  • 召回率达99%,牛津大学等开发AI工具助天文学家快准识别超新星,从亿万星海中秒抓宇宙烟火
  • 用光学生成图像,几乎0耗电,浙大校友一作研究登Nature
  • 告别ROS的繁琐, 易用易学的机器人学习系统: 华为诺亚面向机器人学习的开源Python框架
  • 现货来了!火出圈!钉钉首款AI硬件DingTalk A1正式开售
  • 苹果 iOS 26 今日发布,8 大更新;华为小米宇树入选 MIT「聪明公司 50」;中国核电催更《流浪地球 3》
  • 2027万亿视频市场将爆发!AI十年如何重塑内容产业?|新智元十周年峰会
  • GPT-5是口袋博士?诺奖得主哈萨比斯怒怼奥特曼:博士级AI纯属扯淡!
  • 微软用「光」跑AI登上Nature!100倍能效颠覆GPU,华人首席研究员扛鼎
  • 缺钱但不缺洞见:刚刚,陶哲轩揭秘AI如何吞噬数学项目的灵魂!
  • 马斯克深夜挥刀,Grok幕后员工1/3失业!谷歌AI靠人肉堆起,血汗工厂曝光
  • 全景呈现大模型开源技术路线和生态,蚂蚁开源在2025外滩大会发布全新报告
  • 抢先实测美团首个AI Agent,让我体验一把「懒人点餐」的快乐
  • 将KV Cache预算降至1.5%!他们用进化算法把大模型内存占用砍下来了
  • LLaSO 横空出世:逻辑智能推出全球首个完全开源语音大模型框架,定义 LSLM 研究新基准
  • 为这一个Tab键,我愿意单独付费:Cursor用在线强化学习优化代码建议,护城河有了?
  • 小红书智创音频技术团队:SOTA对话生成模型FireRedTTS-2来了,轻松做出AI播客!
  • 大模型碰到真难题了,测了500道,o3 Pro仅通过15%
  • 耗资15000个A100 GPU日!港中文、阿里等发布600万规模T2I推理数据集与基准
  • INFFUS 25 | FS-Diff:一步到位,用扩散模型同时实现多模态图像融合与超分辨率
  • 神经细胞自动机实现目标导向的形态生成,AI在「生命游戏」里玩出反向规则
  • iPhone 17 全系上线拼多多,5099 起;「罗西大战」后续,传「预制菜国标」过审;小米蔚来小鹏抵制「车圈黑公关」
  • 突发!苹果AI大失血:Siri前掌门离职,核心团队被挖角,新功能延期到2026
  • 对Transformer说不!清华刘嘉:2045数字永生降临|新智元十年峰会
  • 急诊室生死逆转!酒后呕吐,GPT-5一眼锁定食管穿孔
  • 周周996,顿顿预制餐!美国AI界00后卷疯了: 住「棺材房」一周工作92小时
  • 学历越高,越怕熬夜!2.3万人10年研究实锤:睡得越晚,智力下降越快
  • Arm拥抱AI:五倍性能,三倍能效
  • Meta开源MobileLLM-R1模型,不到1B参数,用1/10的训练就超越了Qwen3
  • 清华、上海AI Lab等顶级团队发布推理模型RL超全综述,探索通往超级智能之路
  • 快手可灵团队提出MIDAS:压缩比64倍、延迟低于500ms,多模态互动数字人框架实现交互生成新突破
  • 成本不足60美元!开源U-ARM:让机器人模仿学习更亲民的通用遥操作界面
  • 让机器人“大脑”更轻更快:SQAP-VLA首次实现VLA模型量化与剪枝协同加速
  • 数据与AI双引擎驱动智能未来,2025外滩大会论数据进化之道
  • iPhone 17 Air 在华发售延期;罗永浩直播回应西贝;《流浪地球》第三部剧本完稿,共计十五万字|极客早知道

北大等提出BEVUDA++,首次解决BEV感知跨域难题,夜间检测性能提升12.9%

CV君 2025-09-20 11:02 江苏

几何感知UDA,攻克BEV感知跨域难题

在自动驾驶技术中,以视觉为中心的鸟瞰图(Bird's Eye View, BEV)感知方案正变得越来越重要。然而,现有BEV模型的一个致命弱点是“水土不服”:在一个地方(如晴天的波士顿)训练好的模型,换到另一个地方(如雨天的北京)或不同条件下(如夜晚),性能就会急剧下降。这一“域偏移”(Domain Shift)问题,极大地阻碍了BEV感知技术的实际落地。

为了解决这一难题,来自北京大学、南京大学、香港理工大学和香港科技大学的研究者们,在一篇被 IEEE TCSVT 接收的论文 《BEVUDA++: Geometric-aware Unsupervised Domain Adaptation for Multi-View 3D Object Detection》 中,首次 系统性地研究并提出了解决方案。他们提出的 BEVUDA++ 框架,是一个创新的几何感知无监督域自适应(Unsupervised Domain Adaptation, UDA)方法,在多个跨域场景下取得了SOTA性能,例如在“白天到黑夜”的场景切换中,将关键指标 NDS提升了12.9%

  • 论文标题:BEVUDA++: Geometric-aware Unsupervised Domain Adaptation for Multi-View 3D Object Detection

  • 作者团队:Rongyu Zhang, Jiaming Liu, Xiaoqi Li, Xiaowei Chi, Dan Wang, Li Du, Yuan Du, Shanghang Zhang

  • 机构:北京大学, 南京大学, 香港理工大学, 香港科技大学

  • 论文地址https://arxiv.org/abs/2509.14151

  • 期刊:Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)

背景:BEV感知中的“累积域偏移”挑战

BEV感知模型通常很复杂,它需要将来自多个摄像头的2D图像特征,通过视角转换(LSS)提升到3D空间(Voxel),最后再投影到统一的BEV网格上。问题在于,域偏移(如光照、天气、城市场景风格的变化)会影响到这个流程的每一步:

  • 2D图像空间:图像的风格、光照发生变化。

  • 3D体素空间:由2D特征和不可靠的深度预测构建的3D Voxel特征,会继承并放大2D空间的域偏移。

  • BEV空间:最终的BEV特征会“累积”前面所有空间的域偏移,导致最终的3D目标检测性能严重下降。

BEVUDA++ 的核心目标就是解决这种在多几何空间中累积的域偏移问题。

BEVUDA++:几何感知的师生学习框架

BEVUDA++ 采用了一个巧妙的“师生(Teacher-Student)”学习框架,来实现在没有目标域标注数据下的无监督域自适应。该框架由一个“可靠深度教师”模型和一个“几何一致学生”模型组成。

1. 可靠深度教师 (Reliable Depth Teacher, RDT)

教师模型(RDT)的作用是在目标域(如夜晚场景)上为学生模型提供高质量的监督信号(伪标签)。为了保证信号的质量,RDT巧妙地融合了目标域稀疏但准确的LiDAR点云和模型自身预测的稠密深度图。它通过一个 不确定性估计 机制,来判断模型预测的每个像素点的深度是否“可靠”。对于不可靠的深度预测,就用LiDAR的真实深度来替代。这样生成的“深度感知信息”包含了充足且可靠的目标域知识,能够指导学生模型学习到更鲁棒的Voxel和BEV特征。

2. 几何一致学生 (Geometric Consistent Student, GCS)

学生模型(GCS)是最终在实际应用中进行推理的模型。它的核心创新在于“几何一致性”。为了协同地解决多空间中的域偏移,GCS将来自2D图像、3D Voxel和BEV这三个不同几何空间的特征,通过MLP映射到一个 统一的几何嵌入空间。在这个共享空间里,通过对抗性训练等方式,强制拉近源域和目标域的特征分布。这种方法从根本上解决了域偏移在不同空间中累积的问题。

3. 不确定性引导的EMA (Uncertainty-guided EMA, UEMA)

在师生学习框架中,教师模型通常通过指数移动平均(EMA)的方式来缓慢地更新学生模型的权重。传统的EMA使用固定的更新率。而 BEVUDA++ 提出了一种更智能的 UEMA 策略。它利用之前计算出的“不确定性”来动态调整更新率:当学生模型对自己的预测不确定时(即不确定性高),就减小教师模型的更新幅度,防止教师学到学生的错误;反之,则可以更自信地更新。这大大提升了伪标签的质量和训练的稳定性。

实验结果:全场景、全天候的SOTA性能

研究团队在nuScenes数据集上构建了四种典型的跨域场景(城市场景:波士顿到新加坡;天气:晴天到雨天/雾天;光照:白天到黑夜;连续变化:晴天到不同浓度的雾天)来验证方法的有效性。

定量分析

实验结果表明,BEVUDA++ 在所有四个跨域场景中,性能均全面超越了基线模型(Source Only)和其他现有的域自适应方法。特别是在最具挑战性的“白天到黑夜”场景中,BEVUDA++ 相比于基线模型,NDS提升了12.9%,mAP提升了9.5% ,效果极为显著。

定性分析

从可视化的检测结果和特征分布中,可以更直观地看到 BEVUDA++ 的优势。如下图所示,BEVUDA++(下图)的检测框比基线模型(上图)更准确、置信度更高。同时,t-SNE特征可视化也表明,BEVUDA++能成功地将源域(蓝色)和目标域(红色)的特征分布对齐,而基线模型则无法做到。

消融实验也充分证明了RDT、GCS和UEMA每个模块都对最终的性能提升至关重要。

总结与贡献

BEVUDA++首个 系统性解决多视角BEV 3D目标检测中无监督域自适应问题的工作,其主要贡献在于:

  1. 识别并解决了多几何空间域偏移累积的核心挑战

  2. 提出了一个创新的几何感知师生框架,其中RDT模块利用不确定性提供高质量的深度感知信息,GCS模块在统一的几何空间中对齐特征分布。

  3. 设计了UEMA,一种更智能的教师模型更新策略,有效减少了误差累积。

这项研究极大地提升了BEV感知模型在真实世界复杂多变场景下的鲁棒性和实用性,为自动驾驶技术的最终落地扫清了一大障碍。

了解最新 AI 进展,欢迎关注公众号:我爱计算机视觉感谢点赞支持。

阅读原文

跳转微信打开

联系我们