动态列表

  • 一半人明天不上班,GDP不会掉一点!耶鲁大学揭AGI残酷真相
  • 告别胶水代码,5倍飚速!无问芯穹首次揭秘,Infra智能体蜂群登场
  • Depth Anything再出新作!浙大 & 港大出品:零样本,优化任意深度图
  • H-1B「天价签证」引爆恐慌!印裔精英返乡梦碎,2800亿市场剧震
  • 突发:甲骨文CEO下台!刚和OpenAI签下3000亿美元大单,或因路线斗争
  • 年轻一代创作者,学会与 AI 共舞
  • MiniCPM-V 4.5技术报告正式出炉!首个高刷视频理解多模态模型全解析
  • 一套框架搞定图像定制!IC-Custom统一「位置相关/无关」,万物迁移真落地
  • 北京内推 | Apple中国招聘机器学习/AI方向研究型实习生
  • Yann LeCun团队新作LLM-JEPA:结合联合嵌入预测架构,显著提升大模型微调性能与效率,在代码生成任务上表现卓越
  • SilentStriker:无声击溃大模型
  • TPAMI | 数据增强还在“盲操”?南大提出IPF-RDA,让模型训练告别信息丢失
  • 小米 17 系列手机官宣 9 月 25 日发布;iPhone 17 标准款需求超预期,苹果已增产;罗永浩再回应债务问题:个人债务五年前就还完了,后面是主动还的公司债务|极客早知道
  • 比思维链准43%!逻辑脑+大模型直觉,推理可靠性大幅提升
  • 陶哲轩官宣AI数学基金首轮名单:29个项目瓜分1.3亿,数学界沸腾!
  • GPT-5仅23.3%,全球AI集体挂科!地狱级编程考试,夺金神话破灭
  • 一手奶瓶一手键盘!新手宝妈产假氛围编程,自研实用家庭App
  • 刚刚,DeepSeek-V3.1「终极版」重磅发布!最大提升超36%,V4/R2还远吗?
  • 为了千元机用户的「流畅权」,OPPO 为安卓换了个「引擎」
  • ​一年卖出 10 个亿,这是年轻人真正的「户外神器」
  • Teable 宣布完成数百万美元天使轮融资,让数据库「长出耳朵和手」
  • 北京内推 | 智源研究院多模态交互研究中心招聘多模态/具身智能方向研究型实习生
  • 博士申请 | 复旦大学魏龙老师课题组招收AI4Science方向博士/硕士/RA/实习生
  • Lumos-1登场!自回归 + 离散扩散合体:让大模型真正“构造”动态世界!
  • RLHF要下岗?Meta × 牛津搞出新套路:用算力教算力,大模型训练新范式来了!
  • 不到两千块,我拍到了专业级别的月全食|New Things
  • 苹果发布Manzano:一种简单可扩展的统一多模态大模型,其混合视觉Tokenizer统一了理解与生成任务,性能SOTA
  • 博后年薪40万到90万 | 东方理工朱文韬课题组招聘AI方向博士后、研究助理教授、访问学生、实习生
  • 字节跳动SAIL-VL2登顶OpenCompass,开源高效多模态新标杆
  • 黄仁勋出手,50 亿美元入股英特尔,英伟达一统「GPU+x86」生态
  • 巴菲特清仓比亚迪,期间股价上涨 38 倍;苹果折叠屏手机细节曝光;雷军年度演讲定档 9 月 25 日
  • 刚刚,Gemini「灵魂人物」官宣加盟xAI!马斯克火速转推背书
  • 靠10万+粉丝,北漂插画师秒贷款!华为全栈AI加速,让银行及时看见
  • 醒醒,LLM根本没有性格!加州理工华人揭开AI人格幻觉真相
  • 哈佛大佬都哭了!H-1B签证飙至10万刀,微软谷歌连夜召回全球员工
  • 马斯克xAI百天血战,100天狂招100人!联创实权被削,豪言干掉微软
  • 全球双榜SOTA!明略科技专有大模型 Mano开启GUI智能操作新时代
  • 谷歌Gemini IMO和ICPC夺金功臣之一被xAI挖走,马斯克直呼:起飞
  • 工业级3D世界构建提速90倍!全新框架LatticeWorld让虚拟世界「一句话成真」
  • 集合通信库VCCL释放GPU极致算力,创智、基流、智谱、联通、北航、清华、东南重磅开源
  • 【招生招聘】阿卜杜拉国王科技大学孟彦达博士组全奖博士、博后、实习、交流生
  • 告别视频“抽帧”理解,美国东北大学新算法GRT算法实现高效可扩展的高帧率密集视频理解
  • iPhone17 卖爆,官网发货延至双 11;比亚迪仰望 U9 赛道版开启预定;网友玩坏 iPhone「舌头刷抖音」
  • 「逆龄大脑药」首次人体试验!奥特曼押注RTR242,返老还童将要成真?
  • 终结CMU霸权,清华首次登顶CSRankings世界第一!北大AI领域夺冠
  • 大模型训练新突破!Meta提出LSP:无数据也能实现能力飞升
  • OpenAI最新硬件2026年底亮相!狂挖苹果20+老将,首款神秘设备或将颠覆iPhone
  • 小扎AI眼镜当场死机,CTO自曝灾难级演示内幕:一个指令干趴自家服务器
  • 当大厂「卷」Agent,腾讯选择「下产线」
  • 陈天桥旗下AI公司MiroMind打造全球顶尖预测型大模型,性能登顶行业基准
  • OpenAI从苹果挖了20多人搞硬件,知情人士:苹果创新缓慢、官僚主义令人厌倦
  • Mini-Omni-Reasoner:实时推理,定义下一代端到端对话模型
  • TPAMI 2025 | DiffMVS/CasDiffMVS:一种置信度感知的扩散模型,实现轻量且准确的多视图立体三维重建
  • 北大等提出BEVUDA++,首次解决BEV感知跨域难题,夜间检测性能提升12.9%
  • iPhone 17 Pro 首日即现划痕;传 OpenAI 联手立讯做 AI 硬件;2025 年搞笑诺贝尔出炉
  • 史上最大升级!7亿周活ChatGPT逼宫,谷歌慌了,这次要把AI整个塞进Chrome
  • 谷歌AI或摘千禧年大奖!华人博士破解百年数学难题,首次捕获奇点
  • 登顶多模态推理榜MMMU!UCSD新方法超越GPT-5、Gemini
  • DeepSeek-R1登顶Nature,8位专家严审通过, 大模型「交卷时刻」来了
  • 18岁天才少年,登上Nature封面!
  • ICML 2025 | 乱写Prompt更给力?删几个Token,上下文学习立刻“反向觉醒”
  • 北京内推 | 腾讯混元大模型X团队招聘大模型/强化学习方向“青云计划”实习生
  • 扩散大语言模型也能飞?DPad免训练加速61倍,全局规划照样稳
  • 不要ViT也不要扩散!OneCAT甩掉编码器,统一多模态自回归模型来了
  • 华为超节点:用「一台机器」的逻辑,驱动AI万卡集群
  • 5555被拒稿,AC接收但PC强拒,NeurIPS揭榜引争议
  • 超强开源模型Qwen3、DeepSeek-V3.1,都被云计算一哥「收」了
  • 攻克大模型训推差异难题,蚂蚁开源新一代推理模型Ring-flash-2.0
  • 给大模型「精准手术」:美团智能客服提出逆向学习技术精准纠偏,风险控制提升38%
  • Meta新作SyncSeal:用深度学习“封印”同步信息,让数字水印不再怕裁剪和旋转
  • 阿联酋大学CVLab IEEE Fellow团队招收2026春季/秋季全奖博士生
  • 千禧年大奖难题有望突破?AI为流体动力学提供新思路
  • 生物学迎来「ChatGPT时刻」:Evo构建首个AI生成的「基因组」,开启生成式基因设计时代
  • 英伟达50亿美元入股英特尔,将发布CPU+GPU合体芯片,大结局来了?
  • 理解帮助生成?RecA自监督训练让统一多模态模型直升SOTA
  • 投50亿美元,英伟达联手英特尔;谷歌将Gemini加入浏览器;网约车司机平均月入过万
  • GPT-5攻入数学圈,证明定理快过博士生?网友热议AI新角色
  • 阿里王牌Agent横扫SOTA,全栈开源力压OpenAI!博士级难题一键搞定
  • ChatGPT负责人深度复盘,爆4o复活内幕!过快下线是失误,将迭代模型人格
  • 全球首个AI基因组诞生,35亿年生命代码重编程!生物学迎「ChatGPT时刻」
  • 芯片大地震,黄仁勋355亿入股!英特尔要为老黄造CPU,股价狂飙30%
  • 新思科技中国30周年,引领AI智能体工程师重塑芯片设计范式
  • 科大讯飞发布面向东盟的多语言大模型及系列产品,布局中国—东盟AI生态大未来
  • Nature | 20年后你会患上哪些疾病?AI准确预测超1000种疾病患病风险,助力预防
  • 我们还是低估了英伟达
  • 北京内推 | 字节跳动国际电商团队招聘大模型方向算法实习生
  • 少样本不够看?给LLM装上“学习引擎”,上下文学习迈入千样本时代
  • ICCV 2025 | Gap即力量!挖掘模态间隔潜力,MG-CLIP实现持续学习SOTA
  • 谁在拖慢你的RL?别怪显卡,错的可能是你的PG-loss
  • OneSearch,揭开快手电商搜索「一步到位」的秘技
  • 17.38 万的大六座 SUV,吉利用银河 M9 敲碎了友商的心
  • 刚刚,OpenAI在ICPC 2025编程赛上满分登顶,Gemini也达到金牌水平
  • 从一个公众号智能体说起:好用的Agent,究竟需要什么?
  • B站出海的强有力支柱:最新开源文本转语音模型IndexTTS-2.0标志零样本TTS进入双维度时代
  • 腾讯企点营销云发布Magic Agent,营销工具全面AI化
  • 带屏 AI 眼镜登场!Meta「眼镜全家桶」炸街了
  • 通义DeepResearch震撼发布!性能比肩OpenAI,模型、框架、方案完全开源
  • 让机器人「不只是走路」,Nav-R1引领带推理的导航新时代
  • 刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
  • 腾讯 AI 的新叙事
  • 传小米 YU7 新车型曝光纽北;李飞飞放出 3D AI 新成果; 49.2%,火山引擎大模型调用份额占半壁江山
  • 小扎豪掷143亿,却换不来AI燃料!数据之争下半场,中国冲出一匹黑马
  • 终结数据荒!智源开源首个Deep Research数据合成框架InfoSeek
  • 我用一张照片,生成了一个能走进去的世界
  • 奥特曼爆料:GPT-5重构彻底一切!一人顶五个团队
  • 最新实测GPT-5-Codex:前端能力碾压,复杂项目轻松搞定,Claude可以扔了!
  • 南开大学等提出RAM++:从关注“降质”到关注“内容”,实现鲁棒的全能图像恢复
  • TPAMI 2025 | 弱监督与自监督引领自动驾驶运动预测新范式,用场景分割“脑补”运动,仅需0.01%标注,性能媲美监督方法
  • 博士申请 | 新加坡国立大学CoSTA Lab招收人工智能全奖博士/RA/实习生
  • 不改参数不重训!CARVE一招纠偏,对比注意力让视觉模型精准聚焦
  • ICML 2025 | AI福尔摩斯来了!LLaVA-ReID多轮发问,行人重识别一步步锁定
  • 清华新作颠覆CoT!ParaThinker并行思考,终结单链推理天花板
  • 没想到,音频大模型开源最彻底的,居然是小红书
  • 6.1B打平40B Dense模型,蚂蚁开源最新MoE模型Ling-flash-2.0
  • 「AI助手」真来了?谷歌牵头推进Agent支付协议AP2
  • 腾讯AI Lab首创RL框架Parallel-R1,教大模型学会「并行思维」
  • 阿里开源通义DeepResearch,性能超OpenAI、DeepSeek旗舰模型
  • 华为发布4+10+N中小企业智能化方案,打通迈向智能世界「最后一公里」
  • LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
  • Cell丨谷歌AI co-scientist联合帝国理工揭开谜团:提出并验证细菌基因转移机制假说
  • 华为首款旅行车 1 小时订单破 5000,余承东再次「封神」?
  • 腾讯、复旦、上海创智学院提出SwiftVideo:首个Continuous-time视频蒸馏加速框架,实现业界最快最高清视频生成
  • 刚刚,李飞飞空间智能新成果震撼问世!3D世界生成进入「无限探索」时代
  • 突破单链思考上限,清华团队提出原生「并行思考」scale范式
  • 刘强东喊话王兴:尊重兴哥,不应是仇人;美机器人公司估值暴涨至390亿美元;iOS 微信支持聊天发实况图|极客早知道

KDD 2025 | 从个股偏离到市场共振:UMI挖出股市非理性因子,显著提升预测精度

原创 让你更懂AI的 2025-09-23 18:12 北京

让深度因子看见“情绪”

在刚刚结束的第 31 届 ACM SIGKDD 知识发现与数据挖掘国际会议(KDD2025)上,北京航空航天大学计算机学院 BIGSCITY 实验室发布了名为 UMI(Universal multi-level Market Irrationality)的股票收益预测模型。提出了一种通用的多层次市场非理性因子模型。

本文第一作者为北京航空航天大学计算机学院博士生杨晨,本文的通讯作者为北京航空航天大学计算机学院教授王静远。

论文题目:

Learning Universal Multi-level Market Irrationality Factors to Improve Stock Return Forecasting

论文作者:

博士生杨晨,王静远教授(通讯作者),博士生蒋笑寒,教授吴俊杰

指导教师:

王静远教授(https://www.bigscity.com/jingyuan-wang/)

作者单位:

北京航空航天大学

论文地址:

https://dl.acm.org/doi/10.1145/3690624.3709328

研究背景

近年来,深度学习与量化交易的深度融合在股票投资领域取得了显著成功。大量基于深度学习的模型被开发用于预测股票收益,这些模型利用神经网络强大的表征能力,识别影响股价的模式与因子。

此类深度学习模型能够有效捕捉市场中的普遍规律,例如股价趋势、量价关系以及时序变化等。然而,诸如市场情绪、投机行为、市场操纵和心理偏差等特殊的非理性因素,由于其本身较为抽象,且缺乏明确的标签和数据描述,在现有的深度股票预测模型中尚未得到充分考虑。

为弥补这一不足,本文提出 UMI(Universal multi-level Market Irrationality)——一种通用的多层次市场非理性因子模型,用于提升股票收益预测的准确性。UMI 模型能够从个股和整体市场两个层面学习反映市场非理性行为的因子。

研究动机

与能够通过明确标签和辅助信息直接描述的普遍模式相比,非理性因素更为抽象,因此难以被显式地融入模型之中。目前大多数深度学习预测模型均未充分考虑这些非理性因素,导致模型性能未能达到理想水平。

在 UMI 模型中,本文将市场中的非理性行为分为两类:个股层面的非理性事件和市场层面的非理性事件。个股层面的非理性事件被定义为股票价格暂时偏离其基本面价值(即理性价格)。

协整关系是一种能有效识别此类事件的传统方法,若两支股票的价格序列通过协整检验,说明它们在长期中存在稳定的均衡关系,可互为理性价格的参照;当其中某只股票的价格突然显著偏离这一长期关系时,便可视为发生了股票层面的非理性事件。

非另一方面,本文将市场层面的非理性事件定义为市场中所有股票出现异常的同步波动,因为在有效且理性的市场中,不同股票的价格变动通常由各自的基本面因素驱动,广泛而高度的同步波动并不常见。

在相关知识中,这类现象往往难以用基本面变化解释,更多反映出投资者群体情绪、市场心理或社会文化等非理性因素的影响。正如 2013 年诺贝尔经济学奖得主罗伯特·J·希勒在其著作《非理性繁荣》中所指出的,市场的整体性高涨或恐慌常源于人群的集体心理和行为偏差。

模型方法

在 UMI 模型中,为了利用股票层面的非理性事件,本文提出了一种具有平稳正则化的协整注意力机制,为每个股票构建了一个估计的理性价格。

尽管利用协整来构建配对交易策略可以利用股票市场的不合理性来获利,但其有效性仍然有限。股市中的自然协整关系非常稀少。传统的配对交易策略需要筛选所有潜在的股票对以识别出协整的股票对,这种方法效率低下。此外,该策略只能投资于有限数量的协整股票,导致投资风险较高且策略稳定性较低。

为了克服这一局限性,本文提出了一种基于注意力机制的方法来为每个股票构建一个协整序列,作为估计的理性价格。然后,使用这个估计的理性价格作为指示因子,以提高股票收益预测的性能。

这个理性价格与实际价格具有协整性(实际价格与理性价格之差形成一个平稳序列),但更为稳定,因为它是通过结合多支股票的价格得出的。实际价格与估计的理性价格之间的差异被用作一个因子,以指示股票层面的非理性因素。

正如罗伯特·J·希勒所强调的,市场非理性行为的原因与市场结构、文化乃至投资者心理等多种因素相互关联。仅仅将市场层面的非理性事件认为是市场的同步涨跌,并不能充分捕捉这些潜在因素。因此,本文采用了一种表征学习方法来学习市场层面非理性的综合表征。

该表征学习包含两个部分,第一个是市场层面表征提取模块,用于构建能够准确反映整个市场行为的表征。第二个两个自监督任务,即子市场对比学习和市场同步性预测,将市场层面的非理性因子融入市场表征中,作为市场层面的非理性因子。

最后,股票层面和市场层面的非理性因子都被用作深度学习模型预测股票收益的输入。基于非理性因子,本文提出了一个基于 Transformer 的预测模型,并采用均方误差(Mean Square Error, MSE)和RankIC(Rank Information Coefficient)损失混合训练。

实验验证

在美国和中国股票市场上进行了实验,在此基准上:

i)UMI 的表现显著优于最新的自监督、非自监督股票收益预测方法。

ii)UMI 的表现同样优于通用的自监督、非自监督时序预测方法。

iii)将 UMI 提取的非理性因子与其它方法相结合,也可以提升对应方法的表现。

总结和展望

本文提出了 UMI 方法,旨在利用股票市场中的非理性事件来提升收益预测效果。通过识别实际价格与估计理性价格之间的偏差,UMI 揭示了个股层面的非理性现象;同时,通过刻画股票间异常的同步波动,捕捉市场层面的非理性行为。在美国和中国市场的大量实验验证了该模型出色的预测性能和广泛的适用性。

实验室介绍

BIGSCity 实验室是北京航空航天大学大学计算机学院下属的智慧城市兴趣组,其负责人为北京航空航天大学计算机学院王静远教授。BIGSCity 小组致力于研究机器学习与数据挖掘在城市科学、社会科学等领域的交叉应用技术,包括城市计算,时空数据挖掘,机器学习可解释性,以及 AI 在交通、健康、金融等领域的应用等。详细情况参见研究组主页:https://www.bigscity.com/。实验室长期招聘青年教师、博士后,招收博士研究生以及实习生。有意者请联系 jywang@buaa.edu.cn

更多阅读

#投 稿 通 道#

让你的文字被更多人看到

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

阅读原文

跳转微信打开

联系我们