动态列表

  • Stability AI前CEO惊人预测:人类智力价值归零,只剩1000天!
  • 刚刚,奥特曼预言:人类「只剩」最后5年!
  • 估值840亿AI实验室再放大招,他们要给大模型戴上「紧箍咒」
  • 苹果掀桌!扔掉AlphaFold核心模块,开启蛋白折叠「生成式AI」时代
  • 自动驾驶进入大模型时代,主机厂寻找「联合创始人」
  • 复旦等揭秘机器人“大脑”安全漏洞:一张图就能让它“宕机”,攻击成功率76.2%
  • DASFAA 2025 | 湖大等提出SCRA-VQA:给LLM一份“精装修”的图像描述,无需训练提升VQA性能
  • 苹果官方旗舰店也放假,商品不发货;腾讯推「老年打车」服务;车主酒驾,智能驾驶「报警」|极客早知道
  • 刚刚,ChatGPT Pulse上线!私人秘书不再是富人特权
  • 颠覆算力格局!全球首个星座级太空AI算力服务,在中国诞生
  • OpenAI 3万亿美元测试,AI首战44个行业人类专家!
  • JHU教授揭秘学术潜规则:普通博士如何打破鄙视链翻盘?
  • Hinton预言错了!年薪狂飙52万美元,AI没有「干掉」放射科医生
  • 168 元一年的「小红卡」,是小红书打破本地生活红海的钥匙
  • 当 5 亿玩家涌入 AI 的 3D 新世界
  • 博士申请 | 香港中文大学(深圳)冀晓强老师课题组招收人工智能全奖博士/硕士
  • 128k死穴被击穿!Amazon爆改长上下文:段内压缩快4×,推理不掉点还更准
  • 普林斯顿陈丹琦组新作:RLHF难支撑,RLVR有边界?RLMT开辟第三条路
  • AI 到底会不会做生意?1688 的答案让人惊喜
  • 找人不求人?Lessie 让「人脉玄学」变成算法游戏|AI 上新
  • 斯坦福推出VisualMimic:让机器人“眼观六路”,零样本完成复杂任务
  • 浙大发布RS3DBench:让遥感AI看懂3D世界,首个像素级对齐的大规模基准来了!
  • 小米 17 系列发布,4499 起;追觅「库里南」图片曝光;YU7 Max 成「百万最速」车
  • 刚刚,LeCun团队开源首款代码世界模型!能像程序员一样思考的LLM来了
  • AI正在偷走白领工作!OpenAI狂砸10亿教AI上班,你的完美继任者即将上岗
  • Sora 2瑟瑟发抖!通义万相2.5放大招:一句话出1080P电影,音画精准同步
  • 信息熵之后,清华提出状态熵!量化分析「系统智能性」的全新视角
  • 突发!Meta刚从OpenAI挖走了清华校友宋飏
  • KV缓存不再爆!清华姚期智团队重写注意力维度,长上下文更省更强 | NeurIPS 2025 Spotlight
  • 78条打穿1万条!上交大新范式告诉你:智能体训练靠“质”,不是靠“量”
  • 北京内推 | 中科院软件所数据科学研究中心招聘大语言模型算法实习生
  • 三款骁龙芯片曝光,高通谷歌联手打造「安卓 PC」时代
  • Instagram 月活破 30 亿,靠“短视频”和“私信”;2027款iPhone曝光;女子用ChatGPT选号中百万大奖,全部捐出
  • 一年4次迭代,狂堆GPU成真!微软AI冷液灌芯,散热暴涨3倍
  • 刚刚,阿里CEO吴泳铭发布「ASI宣言」:超级智能才是终局!
  • 前Meta工程师爆料:17人团队15个H-1B!一夜之间80%对手没了?
  • 秘塔AI放大招!「边想边搜边做」,内置20+智能体,想法一键实现
  • 震撼!AI物理「双修」:亥姆霍兹方程嵌进生成器,伪影当场消失
  • OCRBench v2 25年9月最新榜单发布!揭示多模态大模型文档智能真实水平
  • 恶劣天气下的图像修复:南理工等提出LCDiff,让AI在雨雪雾天也能看得清
  • RL不再撒胡椒面!港科大 × 清华新作:只盯“规划token”,大模型推理力狂飙
  • NeurIPS 2025 | 甩掉文本CoT!FSDrive开启时空思维链,自动驾驶迈入视觉推理时代
  • 博士申请 | 加拿大麦吉尔大学智能自动化实验室招收大模型/强化学习方向全奖博士生
  • 3 天卖完今年所有产能,蔚来全新 ES8 如何实现逆风翻盘?
  • 超越 AGI,阿里剑指「超级智能」
  • ContextFlow:无需训练的视频编辑新范式,实现电影级魔改!
  • 字节跳动OmniInsert炸场:无需掩码,任意物体“贴”进视频,效果碾压闭源SOTA!
  • Point-SSM:一种用于点云分析的极简状态空间模型,在医学点云任务上表现SOTA
  • 忘了法拉利,一辆中国车正在改写游戏规则
  • 40亿投进去,换回了什么?全新问界M7的「值得」哲学
  • 华为问界新 M7,1 小时大定 3 万;李想:iPhone 17 顶配太丑,不买;防台风,腾讯「捆绑」QQ 企鹅塑像
  • 一半人明天不上班,GDP不会掉一点!耶鲁大学揭AGI残酷真相
  • 告别胶水代码,5倍飚速!无问芯穹首次揭秘,Infra智能体蜂群登场
  • Depth Anything再出新作!浙大 & 港大出品:零样本,优化任意深度图
  • H-1B「天价签证」引爆恐慌!印裔精英返乡梦碎,2800亿市场剧震
  • 突发:甲骨文CEO下台!刚和OpenAI签下3000亿美元大单,或因路线斗争
  • 年轻一代创作者,学会与 AI 共舞
  • KDD 2025 | 从个股偏离到市场共振:UMI挖出股市非理性因子,显著提升预测精度
  • 一套框架搞定图像定制!IC-Custom统一「位置相关/无关」,万物迁移真落地
  • 北京内推 | Apple中国招聘机器学习/AI方向研究型实习生
  • MiniCPM-V 4.5技术报告正式出炉!首个高刷视频理解多模态模型全解析
  • Yann LeCun团队新作LLM-JEPA:结合联合嵌入预测架构,显著提升大模型微调性能与效率,在代码生成任务上表现卓越
  • SilentStriker:无声击溃大模型
  • TPAMI | 数据增强还在“盲操”?南大提出IPF-RDA,让模型训练告别信息丢失
  • 小米 17 系列手机官宣 9 月 25 日发布;iPhone 17 标准款需求超预期,苹果已增产;罗永浩再回应债务问题:个人债务五年前就还完了,后面是主动还的公司债务|极客早知道
  • 比思维链准43%!逻辑脑+大模型直觉,推理可靠性大幅提升
  • 陶哲轩官宣AI数学基金首轮名单:29个项目瓜分1.3亿,数学界沸腾!
  • GPT-5仅23.3%,全球AI集体挂科!地狱级编程考试,夺金神话破灭
  • 一手奶瓶一手键盘!新手宝妈产假氛围编程,自研实用家庭App
  • 刚刚,DeepSeek-V3.1「终极版」重磅发布!最大提升超36%,V4/R2还远吗?
  • 为了千元机用户的「流畅权」,OPPO 为安卓换了个「引擎」
  • ​一年卖出 10 个亿,这是年轻人真正的「户外神器」
  • Teable 宣布完成数百万美元天使轮融资,让数据库「长出耳朵和手」
  • 博士申请 | 复旦大学魏龙老师课题组招收AI4Science方向博士/硕士/RA/实习生
  • Lumos-1登场!自回归 + 离散扩散合体:让大模型真正“构造”动态世界!
  • RLHF要下岗?Meta × 牛津搞出新套路:用算力教算力,大模型训练新范式来了!
  • 北京内推 | 智源研究院多模态交互研究中心招聘多模态/具身智能方向研究型实习生
  • 不到两千块,我拍到了专业级别的月全食|New Things
  • 字节跳动SAIL-VL2登顶OpenCompass,开源高效多模态新标杆
  • 博后年薪40万到90万 | 东方理工朱文韬课题组招聘AI方向博士后、研究助理教授、访问学生、实习生
  • 苹果发布Manzano:一种简单可扩展的统一多模态大模型,其混合视觉Tokenizer统一了理解与生成任务,性能SOTA
  • 黄仁勋出手,50 亿美元入股英特尔,英伟达一统「GPU+x86」生态
  • 巴菲特清仓比亚迪,期间股价上涨 38 倍;苹果折叠屏手机细节曝光;雷军年度演讲定档 9 月 25 日
  • 刚刚,Gemini「灵魂人物」官宣加盟xAI!马斯克火速转推背书
  • 靠10万+粉丝,北漂插画师秒贷款!华为全栈AI加速,让银行及时看见
  • 醒醒,LLM根本没有性格!加州理工华人揭开AI人格幻觉真相
  • 哈佛大佬都哭了!H-1B签证飙至10万刀,微软谷歌连夜召回全球员工
  • 马斯克xAI百天血战,100天狂招100人!联创实权被削,豪言干掉微软
  • 全球双榜SOTA!明略科技专有大模型 Mano开启GUI智能操作新时代
  • 谷歌Gemini IMO和ICPC夺金功臣之一被xAI挖走,马斯克直呼:起飞
  • 工业级3D世界构建提速90倍!全新框架LatticeWorld让虚拟世界「一句话成真」
  • 集合通信库VCCL释放GPU极致算力,创智、基流、智谱、联通、北航、清华、东南重磅开源
  • 【招生招聘】阿卜杜拉国王科技大学孟彦达博士组全奖博士、博后、实习、交流生
  • 告别视频“抽帧”理解,美国东北大学新算法GRT算法实现高效可扩展的高帧率密集视频理解
  • iPhone17 卖爆,官网发货延至双 11;比亚迪仰望 U9 赛道版开启预定;网友玩坏 iPhone「舌头刷抖音」

免训练加速61倍!陈怡然团队新作DPad:仅关注「彩票token」



  新智元报道  

编辑:LRST
【新智元导读】杜克大学团队发现,扩散大语言模型只需关注少量「中奖」token,就能在推理时把速度提升61-97倍,还能让模型更懂格式、更听话。新策略DPad不训练也能零成本挑出关键信息,实现「少算多准」的双赢。

一图看透全球大模型!新智元十周年钜献,2025 ASI前沿趋势报告37页首发

在大型语言模型的优化中,业界通常认为计算量与模型性能正相关。

然而,杜克大学陈怡然教授团队的一项最新研究DPad,却揭示了一个反直觉的现象:对于扩散大语言模型(dLLMs),通过一种「先验丢弃」策略,主动减少其计算量,不仅能带来高达61倍的推理加速,还能意外地增强模型语境学习的能力。

这一发现源于对dLLM内部一种「中奖彩票」(Lottery Ticket)现象的洞察。模型在生成文本时,其庞大的注意力网络中似乎隐藏着一个极度稀疏但高效的「中奖组合」。

DPad的核心贡献就在于,它无需训练,便能在推理时动态地、近乎零成本地找出这个组合,从而实现速度与精度的双重飞跃。

论文地址https://arxiv.org/abs/2508.14148

代码地址https://github.com/Crys-Chen/DPad

论文作者团队来自杜克大学CEI中心,由实习生陈欣骅、黄思韬及郭聪博士共同完成,指导教师为李海教授、陈怡然教授,其他作者还包括魏迟越、何银涛、张健一。


独特的注意力机制
dLLM的草稿纸


团队发现,dLLM的独特之处在于双向注意力,这使得它在生成文本时,会关注所有待生成的后文词元(Suffix Token),并将它们用作规划全文的「草稿纸」。

「草稿纸」机制使得模型能在Transformer的第n层往后文写入信息,然后在第n+1层读取后文信息,用于辅助前文的解码。

图1 「草稿纸机制」示意图,左下角为前文往后文写入信息,右上角为前文从后文读取信息


反直觉的实验
随手一抓,都能中奖?


前文提到,dLLM在解码前文时,会将大段的后文词元作为草稿纸。

团队进一步分析了模型对后文词元的注意力分数,发现模型对后文词元的注意力随着距离快速衰减,但还是会有一些零星「尖峰」。

说明后文词元有强烈的稀疏性,仅存在少量比较重要的词元。

这个发现完美契合了深度学习中著名的「彩票假说」(Lottery Ticket Hypothesis)。

受此启发,团队提出了「扩散彩票假说」(Diffusion Lottery Tickets Hypothesis):在dLLM的后缀token中,存在一个稀疏的「中奖彩票」子集,只要能「抽中」它们,就能在大幅降低计算成本的同时,达到甚至超越完整模型的性能。

图2 当前块对后缀token的注意力分数图。可以看到,后文token存在部分尖峰

这也是正常词元剪枝(Token Pruning)的逻辑——统计注意力分数,确定不重要的词元,然后将其删除。

然而,DPad团队并不满足于此,他们进行了一项颠覆性的实验:强行删除那些距离很远、但注意力得分很高的「尖峰」词元。

结果出乎意料——模型的准确率几乎毫无损失!

不同于自回归模型,dLLM展现出了惊人的「自愈能力」,仿佛后文词元的信息可以自由流动,当一个关键路径被阻断时,注意力会立刻转移到邻近的词元上,形成新的信息通路。

图3 「注意力迁移」现象,删除「关键词元」后,模型的注意力尖峰转移到附近词元

这个「注意力迁移」现象有力地证明:dLLM的全局规划能力并非依赖于某些特定位置的「明星词元」,而更像是一种分布式的、可替代的冗余系统。

研究人员并没有必要花费大量的计算去确定「关键词元」,直接先验地剪枝,最终保有一套系统就行。


DPad的核心
从「事后剪枝」到「事前筛选」


基于上述发现,DPad提出了一套全新的「事前筛选」逻辑。

不再让模型「全力计算后才发现浪费」,而是在计算开始前就果断地丢弃掉绝大部分冗余部分。

实现该目标的核心是两大策略:

1.  滑动窗口 (Sliding Window)将模型的「目光」强制聚焦在当前解码位置附近的一个固定长度窗口内,从根本上杜绝了对遥远未来的无效关注。

这好比作家在写当前章节时,只详细规划紧邻的几章,而不是构思最后一章的具体措辞。

2.  距离衰减丢弃 (Distance-decay Dropout)在窗口内部,也并非一视同仁。DPad采用一种随距离递减的概率来保留词元,即「越近的草稿越详细,越远的草稿越潦草」。

这两招简单而有效,共同构成了一个动态的「中奖彩票」筛选器,让模型在每一解码步都只使用一个极度稀疏但高效的注意力子集。

图4 (a)自回归模型;(b) 传统dLLM,需要关注所有后缀token;(c) DPad,仅关注附近少数经过筛选的后缀token


颠覆性的成果
速度与精确度的意外双赢


DPad带来的并非传统意义上「牺牲精度换速度」的权衡,而是一场双赢。

「严格匹配」准确率的大幅提升

在常规评测中,「灵活匹配」(Flexible-Match)只要求答案数值正确,而「严格匹配」(Strict-Match)则要求模型严格遵循范例的格式与推理步骤,是衡量模型「语境学习能力」的关键指标。

图5 「灵活匹配」得分和「严格匹配」得分。原始模型(左)没能按照「####」的格式输出答案,没能通过「严格匹配」;使用DPad(右)后模型成功「记得」按「####」输出答案,通过「严格匹配」

图6 DPad在LLaDA-Instruct上的效果

实验显示,原始的LLaDA-Instruct模型在GSM8K任务上严格匹配率仅为37.38%,因为它虽然能算对答案,却无法很好地复刻范例格式。

而应用DPad后,通过滤除大量无关后文词元的干扰,模型能更专注于学习prompt中的有效信息,严格匹配率跃升至63.84%

这表明,DPad让模型变得更「专注」,更能领会并执行复杂指令。

图7 DPad在LLaDA-1.5上的效果

图8 DPad在Dream-Base上的效果

意料之中的惊人加速比

当模型不再需要为海量冗余信息耗费算力后,其推理速度得到了指数级解放。在短示例、长文本生成场景下,DPad的优势被发挥到极致:

图9 在GSM8K(1024 tokens, 1-shot)任务上,LLaDA-1.5+Fast-dLLM+DPad实现了61.39倍的加速

图10 在HumanEval(2048  tokens, 0-shot)任务上,Dream-Base+Fast-dLLM+DPad实现了97.32倍的加速

在LLaDA-1.5模型(1024 词元输出)上,DPad结合并行解码等优化后,实现了61.39倍的综合加速。

在Dream模型(2048 词元输出)上,这一数字更是达到了97.32倍


总结


DPad证明,对于dLLM而言,「少即是多」。

它通过一种巧妙的、免训练的「事前筛选」机制,揭示并利用了dLLM中潜在的稀疏结构。

其带来的不仅是接近两个数量级的推理加速,更有对模型深层能力的意外增强。

这项工作为我们开辟了一条全新的优化思路:未来的模型设计或许可以更大胆地探究稀疏性,让dLLM在「化繁为简」的道路上走得更远。

参考资料:
https://arxiv.org/abs/2508.14148

<br>


    <a class="media_tool_meta meta_primary" href="http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&amp;mid=2652630629&amp;idx=3&amp;sn=30b2146093f48283445462a975082190&amp;chksm=f0e775f8acb2e86d7273d5d41afc448bbeb1c85cee65f12c70789b688807e358b26808d78e09&amp;scene=0#rd"  target="_blank">文章原文</a>
    <br>




<img alt="" class="" height="1px" src="https://images.weserv.nl/?url=http://www.jintiankansha.me/rss_static/5418/xSGha4CWNM&amp;maxage=1y"  width="1px"></div></div></body></html>

联系我们