动态列表

  • 腾讯王者归来:混元图像3.0登顶LMArena!一手实测全球最强图像AI
  • 最新,2025诺奖预测出炉!中国科学家有望拿下化学奖?
  • 奥特曼:感受不到GPT-5变强,是因为你还不够「专业」
  • GPT-6或将比GPT-5强10倍!奥特曼揭秘ChatGPT如何诞生
  • LSTM之父再出手!xLSTM挑战Transformer:一场关于Scaling Laws的正面交锋
  • NeurIPS 2025 | AI也能做数学建模?本科生携手MM-Agent勇夺美赛全球前2%
  • “移步换景”一试,大模型全乱了:OST-Bench揭示MLLM时空推理短板
  • 微软下架「炉石」等多款游戏;华为云:华为算力效能超英伟达芯片 3 倍;马斯克回应特斯拉机器人打拳:并非遥控
  • 陶哲轩联手GPT-5,1小时攻克数学难题!全程无需编码,OpenAI副总惊呼
  • 1亿签约金抢AI大神?谷歌AI元老劝退全网:别再读博了!
  • 三天逆袭,Sora登顶美榜!15秒大片玩疯奥特曼,全网直呼真假难辨
  • 10个Agent一键组队:并行智能体协作,端到端交付从24h缩减到4h!
  • 首位AI女演员出道!好莱坞「天敌」来了,下一代偶像全是代码制造?
  • 南理工提出FMC-DETR:巧用“频率解耦”,航拍小目标检测精度飙升8.2% AP50
  • 网红挑战特斯拉FSD穿越美国出车祸;小米回应「小米汽车突然自己开走」;Sora 登顶美区苹果商城免费榜
  • 刚刚,Anthropic紧急换帅!新任CTO执掌算力命脉,直面OpenAI千亿赌局
  • Gemini 3.0 Pro内测流出,编程实力惊人!下周上线
  • 刚刚,奥特曼首曝:AI取代CEO后,我想去当农民!
  • 华人主导谷歌SLED,论文登顶会!一键让模型学会自救
  • LeCun考虑辞职!Meta AI百亿豪赌引爆「内战」,逼走首席科学家
  • NeurIPS 2025 | RAD:基于大规模3DGS孪生数字世界的端到端强化学习训练策略
  • 小米 17 系列销量超百万;苹果新产品泄密源头疑为越南工厂;低价版 model Y 现身官网代码|极客早知道
  • 刚刚,这家0产品0模型就估值854亿的公司,终于发布了首款产品!
  • 刚刚,奥特曼亲赴,韩国「举国」投靠!
  • 奥特曼「一张脸」引爆全球狂欢!Sora 2冲上APP榜第三,邀请码炒到1250元
  • 60岁老人AI养生三个月吃进医院!「AI精神病」全球扩散,OpenAI急招医生
  • 一杯咖啡,3亿美金!斯坦福天才少女退学创业,Meta AI大牛排队加入
  • 武大新作MASt3R-Fusion:融合IMU与GNSS,为新一代视觉SLAM注入“多感官”智慧
  • 中科大、清华、快手等发布OpenGPT-4o-Image:为多模态AI打造的“超级燃料”,图像编辑性能提升18%
  • 历史首位,马斯克身家突破 5000 亿美元;王腾注销、清空多个社媒账号;美国演员工会抵制 AI 演员
  • 刚刚,OpenAI Sora 2重磅登场!首个APP上线,或将成为AI时代新TikTok
  • Sora 2全网疯狂实测:以假乱真、脑洞大开、虚实难分|附首个APP教程和邀请码
  • OpenAI和DeepMind大佬离职联手,誓用AI科学家实现室温超导!已融3亿美元
  • 南洋理工联合商汤提出Visual Jigsaw:像玩拼图一样,显著提升多模态大模型的视觉理解力
  • 天津大学联合腾讯提出Wan-Alpha:一键生成高质量透明视频,发丝级抠图不再是梦
  • OpenAI 深夜重磅推出新视频模型和独立 App;英伟达市值突破4.5万亿美元;特斯拉预计推出第三代人形机器人 | 极客早知道
  • 刚刚!软银系创始人4个月打造机器人超级黑马,获2轮近亿元融资
  • 博士生,当代最穷科研民工?Nature最新调查:不涨工资,我们就跑路了
  • Thinking Machines曝LoRA终极指南:10倍学习率,媲美全参微调
  • AI改造出行体验:滴滴的试验能否开启行业范式转变?
  • GPT-5「降智」真相曝光:不是变笨,而是五个超级开关没激活
  • OpenAI 刚刚发布了属于 AI 的抖音,还有 Sora 2
  • YOLO26首份学界评论:端到端无NMS,目标成为边缘设备实时目标检测新标杆
  • DeFacto:用强化学习治愈AI幻觉,让多模态模型“有据可查”
  • NeurIPS 2025 | 清华大学与华为等提出全新正则化方法,破解稀疏视图3DGS“协同适应”难题
  • LoRA到底能否媲美全参?Thinking Machines用实验曲线划出「无悔区」
  • 榜一换人!OCRBench v2九月新榜:揭示多模态大模型文档智能真实水平
  • 把“俄罗斯方块”搬进设计室:物竞天择让振动微型机器人进化得越跑越快
  • DeepSeek V3.2 发布,API 成本减半;特斯拉员工被机器人打伤,索赔 5100 万美元;Claude 新模型登场
  • 谷歌Veo 3论文竟无一作者来自美国!揭秘零样本「看懂」世界
  • 零样本「即插即用」!智源开源RoboBrain-X0,一个基座模型开动不同机器人
  • AI老司机现身重庆!徐峥挑战赛车手,上演「不再囧途」
  • 强化学习之父给LLM判死刑!站队LeCun:我们全搞错了
  • 独家!DeepSeek最新模型上线,全新注意力机制基于北大ACL最佳论文
  • 北京内推 | 快手可灵AI技术部招聘视频生成/数字人方向算法实习生
  • KDD 2025 | 看不见也能控:用“基混杂向量”打穿分布移位,交通预测稳了
  • 4B逼近DeepSeek-R1!Bengio团队「递归聚合」刷新小模型上限
  • 在云栖,我们遇见了最会玩的「AI 原住民」
  • NeurIPS 2025 | UniPixel:首个统一对象指代与分割的像素级推理框架,让大模型看懂每一个像素
  • NeurIPS 2025 | Seg4Diff:无需分割头,揭示并放大扩散Transformer中的涌现分割能力
  • 做 AI 陪伴收获 1000 万用户后,前微信 AI 产品负责人,要重新定义生活里的 AI
  • 透视阿里云产品生态团队:AI 落地的「关键通道」
  • OpenAI「降配门」发酵,偷换模型遭全网实锤;小米 SU7 在日本首秀;苹果内部测试类 ChatGPT 应用|极客早知道

AI「学不会」竟成相变探针!UCSD华人联手谷歌等,曝光量子纠缠秘密



  新智元报道  

编辑:KingHZ
【新智元导读】人工智能常被看作解决问题的工具,但在最新发表于arXiv的一项研究中,它的「失败」本身却成了科学发现的线索。

一图看透全球大模型!新智元十周年钜献,2025 ASI前沿趋势报告37页首发

来自加州大学圣地亚哥分校(UCSD)的华人学者Wanda Hou,与加州大学伯克利分校以及Google Quantum AI合作,在谷歌的SycamoreWillow超导量子处理器上完成了一次别开生面的实验。

他们发现:当机器学习模型「学不会」时,正好对应量子体系发生了测量诱发的相变。AI的失效,反而成为了物理的探针。

论文链接:https://arxiv.org/abs/2509.08890

为什么要关注测量?

在量子计算中,测量通常被视为「终点」——想得到结果,就测量比特;但这一步也会破坏量子态。

令人惊讶的是,测量并不只是破坏,它还能在未被测量的比特之间诱发新的远程纠缠

问题是,这种效应隐藏得太深,传统方法往往需要指数级的实验次数才能把它揪出来。

于是,研究团队提出了一个大胆的问题:能否完全放弃先验知识与繁琐的「后选」,让机器学习直接从数据里自己发现?

如何把AI拉进实验室

团队首先在谷歌的超导量子处理器上制备了一维和二维cluster态

然后,他们测量掉几乎所有的量子比特,只留下远距离的两个探针比特,并用「经典影子(clssical shadow)」方法去记录探针的状态。

接着,他们把这些实验数据输入一个带注意力机制的生成式神经网络。

与常见的监督学习不同,这个模型没有标签、没有先验,全靠无监督学习来「猜测」探针的后测量态。

Image caption:一维实验:测量掉链中比特,两端探针产生纠缠。


二维实验:随测量角度变化出现相变,临界点角度的纠缠骤现。


神经网络:直接用测量数据学习探针状态,估计纠缠与熵,无需先验模型。

「意外」的发现

在一维34比特的实验中,AI的表现堪称亮眼:即使什么先验都不给,它仅凭数据就学出了与理论模型一致的远程纠缠。可到了二维6X6阵列,情况突然变得耐人寻味:

  • 在低纠缠区:体系没有长程量子纠缠,AI很快就学会了测量数据中的简单结构,预测结果与理论一致,纠缠为零。学习曲线迅速收敛,所需计算资源也远小于传统模拟。

  • 在高纠缠区:体系充满全局性的量子纠缠,数据看似随机却高度相关,但这种复杂性根本无法被经典算法解码。AI并不是「不够强」,而是遇到了物理层面的「硬障碍」。它虽然也能很快收敛,但学到的只是「瞎猜」,因此无法探测到纠缠。

  • 在临界点:情况最耐人寻味。AI的学习曲线突然拉长,说明它在数据中捕捉到了复杂且丰富的结构,需要更多训练才能收敛。最终,它在这里给出的纠缠信号出现峰值,恰好对应体系发生相变的临界点

换句话说,AI的「学不会」,正好对应量子体系进入临界的时刻

重要的是,这并不是AI本身的问题,而是全局量子纠缠带来的指数级复杂度,天然超出了经典算法的解码能力。经典AI在这里触碰到了物理世界的「硬边界」,它的失效反而成为我们确认临界性的信号。

从经典AI到量子AI

这一发现也让人重新思考未来:如果经典AI的局限来自无法高效模拟全局量子纠缠,那么当量子计算机本身成为AI的算力基座时,会发生什么?

理论上,量子增强的AI能直接处理纠缠与非局域关联,从而跳过经典算法的「学习失败」瓶颈。

这不仅意味着更强的模式识别与科学建模能力,也可能成为科学家们长期设想的「真正的科学智能体」的雏形

值得注意的是,Google Quantum AI团队在几乎同一时间发表的另一篇工作。

论文链接:https://arxiv.org/abs/2509.09033

这篇工作就从理论角度证明:当量子计算机用作生成式AI的基座时,模型能力将出现本质性的进化,能实现经典AI无法触及的表达与推理能力。

在这个意义上,今天我们看到的「AI学不会」,并不是失败的终点,而是未来量子AI的起点路标

当量子与智能真正融合,我们可能迎来一次科研范式的根本飞跃。

意义与展望

这项工作带来的启示至少体现在三个方面:

  1. 新型观测范式:通过AI学习与量子—经典交叉关联,研究者能够在无需后选、避免指数级实验成本的条件下,从数据中直接提取物理信号。更重要的是,AI的「学不会」本身也成为了临界性的标志,让学习过程转化为一种新的观测手段。

  2. 误差校正潜力低纠缠区(可「擦除」的区域),AI能快速学习并准确识别测量数据的结构信号。这类能力非常适合应用于量子误差校正,帮助量子计算机实时定位并修复局部噪声和错误。

  3. 未来前景:量子计算与人工智能的结合,有潜力孕育真正面向科学探索的智能体。当AI本身运行在量子计算机上时,它或许能够突破经典算法的限制,直接操控和解码量子纠缠,带来一次智能形态的根本飞跃。

总结

由UCSD与UCB领衔、并与Google Quantum AI深度合作的这项研究,首次在实验中表明:经典学习模型的失败本身可以作为物理临界点的探针

在一维体系中,研究者仅凭数据驱动就揭示了远程纠缠;在二维体系中,机器学习的「学不会」与测量诱发相变的临界点精确重合。

这不仅突破了传统观测的瓶颈,也预示着一种新的研究范式:AI不只是辅助工具,它本身也能成为探索自然规律的显微镜。而当量子计算赋能AI时,科学家们或许将迎来真正的「量子智能体」时代。

参考资料:
https://arxiv.org/pdf/2509.08890


<br>


    <a class="media_tool_meta meta_primary" href="http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&amp;mid=2652632263&amp;idx=3&amp;sn=1d59cc25b70fb1ccba54dba77d99b577&amp;chksm=f03ab8d131c558af69d3a5d563264ec9a55ee77e65711f3cfe1b959e5b556660a6675912451f&amp;scene=0#rd"  target="_blank">文章原文</a>
    <br>




<img alt="" class="" height="1px" src="https://images.weserv.nl/?url=http://www.jintiankansha.me/rss_static/5418/SUMZXvCseF&amp;maxage=1y"  width="1px"></div></div></body></html>

联系我们