动态列表

  • GPT-5王者归来?奥特曼称AI已跨科学门槛,三大学科正迎来实质性突破
  • 老黄押宝「美版DeepSeek」!谷歌天才叛将创业,一夜吸金20亿美元
  • 任意Agent皆可强化学习!微软推出Agent Lightning框架,无需修改任何代码
  • 13万被引!ImageNet作者苏昊或将加盟复旦
  • 250份文档投毒,一举攻陷万亿LLM!Anthropic新作紧急预警
  • 和两位 CEO 聊 Sora: 应用层爆发的里程碑事件,创业者的机会来了
  • 新一代短剧人,涌向郑州「淘金」
  • 社交媒体的黄金时代,结束了
  • 东京大学、牛津大学等联合发布VLA万字综述:机器人迈向通用智能的全栈指南
  • U-Bench:U-Net十年“大乱斗”终结者,100个变体、28个数据集的终极对决
  • DeepSeek苦练1T,清华只用5B?InfLLM-V2把稀疏注意力玩明白了
  • 北京/上海内推 | 阶跃星辰招聘RL for AIGC方向算法研究员/实习生
  • EMNLP 2025 | 拨云见日:知识电路分析揭示大语言模型“知识遮蔽”幻觉之源
  • Sora 下载量破 100 万次;国庆中秋假期国内游总花费超过 8000 亿元;智驾多位核心高管离职,蔚来回应|极客早知道
  • 谷歌杀入诺奖神殿,两年三冠五得主!世界TOP3重现贝尔实验室神话
  • OpenAI×英伟达,可能创造了人类史上最大万亿级泡沫
  • H-1B正在筛掉「下一个英伟达」?
  • 全球AI视频大战升级!「中国版Sora」Vidu Q2参考生月底发布,能力对标Sora 2
  • 第二代InfLLM开源,同尺寸快三倍!零参数,可训练稀疏注意力
  • 腾讯推出TRM:让大模型像人类一样批判性思考,从文本依赖到事实正确
  • 马毅团队重磅发布新书:从MCR²到白盒Transformer,重构深度学习的第一性原理
  • Diffusion²来袭:威斯康星大学&华盛顿大学等提出双扩散模型,“回溯历史-预测未来”,破解自动驾驶“鬼探头”难题
  • 北大等提出TrackVLA++:赋予机器人推理与记忆,跟踪成功率飙升12%
  • 把我的第一次日本旅行,完全交给 AI 是什么体验?
  • 英伟达将投资马斯克的 xAI;低价版Model 3/Y 「阉割」智驾功能;微信推出批量撤回信息功能
  • 刚刚,清华物理传奇Yao Shunyu,跳槽谷歌DeepMind!
  • 赚100亿,烧1万亿!OpenAI算力神话:英伟达撒钱、AMD送股、全硅谷陪跑
  • 英伟达垄断AI算力局面或将被颠覆!AMD赌上身家发起决斗,奥特曼窃喜
  • 刚刚,2025年诺贝尔化学奖揭晓!偷溜进图书馆的少年,改变了世界
  • 小心,AI依赖会让你变笨!吴恩达等专家教你如何正确使用AI
  • 无RLHF,7M小模型反超DeepSeek-R1:三星团队用递归思考取代规模堆叠
  • IROS 2025 | Waymo与谷歌DeepMind联手提出Drive&Gen:用生成视频评估自动驾驶,虚拟测试更逼真
  • 告别深度传感器!慕尼黑工业大学提出DropD-SLAM:仅用单目RGB即可实现RGB-D级的SLAM精度
  • 陶哲轩联手ChatGPT!10分钟击碎30年「无理」难题,数学圈炸裂
  • 刚刚,奥特曼官宣ChatGPT「终极OS入口」!8分钟速搭智能体,8亿人狂欢
  • 顿悟不是玄学!港科大清华等联手:撕开推理黑箱,RL让AI像人思考
  • 4万亿帝国接班人浮出水面!苹果不需要另一个库克
  • 刚刚,2025年诺贝尔物理学奖揭晓!量子计算成最大赢家
  • NeurIPS 2025 | 北邮用“图+文”把人物检索拉满:自动合成数据 × 细粒度特征对齐
  • 告别梯度!Evolution Strategies全参微调挑战PPO/GRPO:更稳、更省、更好复现
  • TPAMI 2025 | 电子科大等提出EEMFlow:从事件相机学习高效Meshflow与光流,速度提升30倍
  • MICCAI 2025 | 莱斯大学提出MetaSeg:参数减少90%,元学习隐式网络重塑医学图像分割
  • OpenAI 与 AMD 签百亿美元协议,后者股价暴涨;特斯拉廉价 Model Y 将于 7 日发布;知名旅行、听歌应用入住 ChatGPT
  • 乔纳森下一个iPhone神话,要黄了?OpenAI秘密AI硬件深陷三重困境
  • 3年手搓ChatGPT!剑桥天才少年在Minecraft游戏中爆火回归
  • 一举击败Claude Code!微软提出代码生成黑科技:一键直出36K行代码
  • 刚刚,2025年诺贝尔生理学或医学奖揭晓!三位得主点燃器官移植希望
  • OpenAI入股AMD,股价暴涨35%!奥特曼左手黄仁勋,右手苏姿丰,通吃全球算力
  • 真实数据、全链路、可复核:GenoMAS打造更可信的基因分析智能体
  • 自进化Agent的第三种可能:隐式记忆,不动模型参数,胜过GRPO
  • NeurIPS 2025 | 高通提出GCL:无需额外数据,通用多模态检索迎来“一统江湖”新范式
  • NeurIPS 2025 | 慕尼黑工业大学提出SIM(3)等变网络:让3D形状补全告别“姿态偏见”,实现跨域泛化
  • 今日迎本世纪「最晚中秋月圆」;雷军:小米17 五天销量破百万;ChatGPT 或添私信聊天功能
  • 腾讯王者归来:混元图像3.0登顶LMArena!一手实测全球最强图像AI
  • AI「学不会」竟成相变探针!UCSD华人联手谷歌等,曝光量子纠缠秘密
  • 最新,2025诺奖预测出炉!中国科学家有望拿下化学奖?
  • 奥特曼:感受不到GPT-5变强,是因为你还不够「专业」
  • GPT-6或将比GPT-5强10倍!奥特曼揭秘ChatGPT如何诞生
  • 宾大提出F³:事件相机迎来“预测性”表征新范式,光流、分割、深度全SOTA!
  • “移步换景”一试,大模型全乱了:OST-Bench揭示MLLM时空推理短板
  • NeurIPS 2025 | AI也能做数学建模?本科生携手MM-Agent勇夺美赛全球前2%
  • LSTM之父再出手!xLSTM挑战Transformer:一场关于Scaling Laws的正面交锋
  • 微软下架「炉石」等多款游戏;华为云:华为算力效能超英伟达芯片 3 倍;马斯克回应特斯拉机器人打拳:并非遥控
  • 陶哲轩联手GPT-5,1小时攻克数学难题!全程无需编码,OpenAI副总惊呼
  • 1亿签约金抢AI大神?谷歌AI元老劝退全网:别再读博了!
  • 三天逆袭,Sora登顶美榜!15秒大片玩疯奥特曼,全网直呼真假难辨
  • 10个Agent一键组队:并行智能体协作,端到端交付从24h缩减到4h!
  • 首位AI女演员出道!好莱坞「天敌」来了,下一代偶像全是代码制造?
  • 南理工提出FMC-DETR:巧用“频率解耦”,航拍小目标检测精度飙升8.2% AP50
  • 网红挑战特斯拉FSD穿越美国出车祸;小米回应「小米汽车突然自己开走」;Sora 登顶美区苹果商城免费榜

稳住训练、跑出泛化:STAGE重写「自回归图像生成」的强化学习范式

2025-10-09 23:49 北京

扩散不再一家独大

在扩散模型一家独大的时代,自回归文生图的潜力正被重新挖掘——它拥有更强的离散表征能力,却也更容易在强化学习阶段“失稳”。

STAGE 在自回归(Autoregressive, AR)文生图模型上首次实现了稳定性与泛化性的显著提升。它有效缓解了现有 GRPO 在自回归视觉生成中遇到的训练不稳与泛化差的问题,在多个主流评测基准上取得领先。

论文标题:

STAGE: Stable and Generalizable GRPO for Autoregressive Image Generation

论文链接:

https://arxiv.org/pdf/2509.25027

代码链接:

https://github.com/krennic999/STAGE

背景

近年来,自回归模型凭借良好的可扩展性与离散表征,正成为文生图的重要方向。但将强化学习(RL),尤其是 GRPO,直接用于自回归图像生成仍面临两大挑战:

其一,训练过程易不稳定,自回归模型对分布微小扰动高度敏感,难以稳步提升;

其二,多轮 RL 易引发分布漂移,逐步破坏预训练分布,进而出现 reward hacking 等现象,导致在训练集之外的基准上难以泛化、指标受限。

论文方法

STAGE 针对性提出了两项改进:

相似度感知的 Advantage/KL 重加权:在传统 GRPO 中,不同图像样本的相似区域往往会被分配到相反的奖励,导致训练过程产生冲突梯度。STAGE 引入基于视觉 token 相似度的加权机制,能够识别并降低这些冗余更新。

这样既能避免模型在背景等相似区域被反复扰动,又能突出前景和关键语义区域的优化方向,从而更好地保留预训练模型的原始分布,并显著提升训练效率与生成质量。

熵奖励(Entropy Reward):在训练过程中,由于某些奖励模型产生不明确的奖励(如GenEval),可能导致不稳定的策略熵变化,从而降低训练稳定性。

STAGE 引入基于参考模型的熵差奖励,在强化学习中动态约束模型的熵水平,防止熵坍塌并保持合理的不确定性。这种设计既能保证生成结果的稳定性和一致性,又能维持必要的多样性,使模型在跨任务泛化时依然具有良好的表现。

实验结果

GenEval 分数:在 Janus-Pro 7B 基础上,STAGE 将 GenEval 提升至 0.89,超过大多数现有扩散与自回归模型。

跨任务泛化:在 GenEval reward 上训练的模型展现出更强的泛化能力,在 T2I-Compbench 和 ImageReward 上的指标远高于基线 GRPO。

其他类型的奖励模型(Human preference,OCR 等)展示了所提方法在细节保真、布局稳定与文本渲染能力上的优势。

通过视觉效果对比,展示了所提方法在结构稳定性、细节和图像美学等方面的优势:

结语

STAGE 在强化学习驱动的自回归图像生成领域,首次实现了稳定性与泛化性的双提升。它突破了现有 GRPO 方法的局限,为自回归模型缩小与扩散模型之间的差距提供了新的思路。

更重要的是,STAGE 证明了——当强化学习与自回归生成以更精细的结构约束结合时,模型不仅能“稳住”,还能“学会泛化”。这一结果为未来构建高质量、高一致性的文生图系统提供了新的方向,也为强化学习在视觉生成中的可控性研究奠定了基础。

更多阅读

#投 稿 通 道#

让你的文字被更多人看到

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

阅读原文

跳转微信打开

联系我们