动态列表

  • ICLR 2026出分,审稿员怒喷「精神病」!DeepMind研究员教你绝地求生
  • GPT-5.1发布当天,文心5.0杀回来了
  • 一句「你还好吗」值40亿?斯坦福博士出走xAI,押注AGI共情力
  • 营收狂飙的「暗面」:Meta成「全球欺诈大本营」?
  • 小鹏科技日「太魔幻」:机器人走猫步,飞行汽车接近量产
  • Roboflow&CMU论文披露RF-DETR细节:首个COCO数据集突破60 AP实时目标检测,速度飙升20倍!
  • AAAI 2026 Oral 中科大联合西工大提出RSKT-Seg:专为遥感打造的高效开放词汇分割框架,推理提速2倍
  • 深度研究智能体真的“懂你”吗?OPPO × 浙大首发个性化深度研究评测基准
  • 博士申请 | 佛罗里达大学计算机系招收NLP/LLM方向全奖博士/实习生
  • DeepSeek罗福莉正式亮相小米AI;「周杰伦概念股」联手宇树造 IP 机器人;乘用车百公里加速不少于5秒
  • 奥特曼下注27岁神秘青年,「复活」世界最顶级实验室
  • AI秒破18世纪「天书」账本!谷歌新模型盲测刷屏全网
  • Llama 4造假丑闻幕后:小扎豪赌143亿,却为中国AI「做了嫁衣」
  • 少年沉迷AI自杀,9岁遭性暗示!这门「孤独生意」,正推孩子入深渊
  • ConsistEdit:重新定义AI视觉编辑,港科大、清华等机构提出MM-DiT注意力控制新方法
  • NeurIPS 2025 | 中科院携手快手发布LiveStar:首个“会说话、懂沉默”的直播AI,推理速度提升1.53倍
  • 双十一算力真敢卷!RTX 5090低至0.69元/时,同预算跑更多实验
  • AAAI 2026 | 悉尼科技大学 × 港理工推出 FedVLR:让联邦推荐也能“懂图文”
  • 北京内推 | 阿里高德地图团队招聘大模型方向算法实习生(可长期/转正)
  • 对话元理智能张帆:为什么「商业强化学习」,才是 AI To B 的新出路
  • 深度复盘:大疆是如何成为影像领域新巨头的?
  • 传李想亲抓人事,华为系高管退出理想;Meta 首席 AI 科学家杨乐昆离职创业;AI 减肥或致饮食失调
  • Nature子刊:太空中建数据中心,无限能源,浙大首次证实可行!
  • 英伟达铁幕之后,谷歌AI芯片已成气候
  • 翻译界的ChatGPT时刻!Meta发布新模型,几段示例学会冷门新语言
  • 硅谷GPU蒙尘,马斯克一言成谶:美国AI被电卡脖子
  • 65岁图灵巨头离职创业!LeCun愤然与小扎决裂,Meta巨震
  • 年产值突破 150 亿,刚毕业的俊男美女涌入「团播」工厂
  • 马斯克想要 1 万亿,何小鹏只想等一句「牛 P」
  • 通往AGI的歧路:上海AI Lab重磅发现,自进化智能体可能“错误进化
  • 北京内推 | 百度文心一言基座团队模型组招聘大模型方向研究型实习生
  • 全模态到底是不是“1+1>2”?美团UNO-Bench揭示单模态与全模态能力的组合规律
  • NeurIPS 2025 | 上交大、南农大提出ADPretrain:为工业异常检测量身打造的预训练“超能力”
  • 3DV 2026 | 特伦托大学等提出DEMO:让AI看懂复杂人体动作,实现密集描述新范式
  • 小米汽车 10 月销量近 5 万,YU7 超 Model Y;美团 AI 编程工具开启公测;马化腾王传福成智元机器人受益股东
  • AI版PUA!哈佛研究揭露:AI用情感操控,让你欲罢不能
  • AI领域全新热门职业,岗位需求今年已增长逾800%
  • 硅谷10万大裁员真相:AI根本没想取代你,是老板想干掉你
  • OpenAI试图绑架美国政府,奥特曼还有救命底牌?
  • 全球68%科研人压力爆表,高校AI人才集体大逃亡!
  • 「传统教育」的船快沉了,人们却还在挤「头等舱」
  • 保暖?排汗?时尚?户外运动装备这道「选择题」,亚瑟士要打破「不可能三角」
  • EMNLP 2025 | 别再只看KV了!LLM越深越稀疏:UNCOMP用矩阵熵给出答案
  • 过去五年,BERT都在被“过度训练”?LeCun团队给出Encoder算力最优范式
  • 北京内推 | 腾讯AI Lab招聘大模型/多模态大模型方向研究型实习生
  • 在 Cursor 工作 60 天,我发现了这家公司成功的秘密
  • 这款 AI 写作神器,让数百网文作者「月入过万」|AI 上新
  • ACM MM 25 当MLLM遇上行人重识别:是“降维打击”还是“水土不服”?深度评测来了!
  • AI“世界模型”离真实手术还有多远?首个外科视频生成基准SurgVeo揭示“合理性差距”
  • 美国AI巨头股缩水8000亿美元;传Meta靠诈骗广告收入超千亿;《英雄联盟》S15总决赛T1夺冠|极客早知道
  • 谷歌二代Nano Banana爆出!一键推演微积分,终结PS时代
  • 狗也被AI抢饭碗?好莱坞动物演员全下岗,观众直接翻脸了!
  • ChatGPT求婚火了,一句「我愿意」刷屏!网友:是真爱了
  • 小成本DeepSeek和Kimi,正攻破奥特曼的「算力护城河」
  • NeurIPS25 | 清华&北大提出LinearDiff-ViT:让Transformer学会“找不同”,实打实提升模型性能
  • AI 六巨头罕见同台,辨论 AI 泡沫;SpaceX 公布简化版登月舱方案;王者荣耀年度总决赛首次在鸟巢举办
  • LLM首次达到人类语言专家水平!OpenAI o1拿下拆解句法、识别歧义、推理音律
  • 仅2天!谷歌AI破解十年谜题,锁定救命药人类全失手
  • 终结Transformer统治!清华姚班校友出手,剑指AI「灾难性遗忘」
  • 仅0.2B就比GPT-4.1强?加州大学新指标:组合推理基准首次超越人类
  • AI六巨头罕见同台!李飞飞激辩LeCun,黄仁勋:你们都错了
  • 复盘大疆 Pocket 的七年:从「定义产品」到「定义时代」
  • TRO'25开源|机器人建图的终局?一个框架搞定光学、几何与语义!
  • 10.58 万!零跑造了一台「红米 YU7」
  • 当一家传统车企,终于决定「师中长技」
  • AI热潮推动,全球 DRAM 内存价格暴涨;泡泡玛特回应直播事故;媒体爆料iPhone 18 Pro工程机进展
  • 强化学习教父重出江湖, 生成式AI的时代要结束了?
  • 英伟达新架构引爆全模态大模型革命,9B模型开源下载即破万
  • 投85份简历0 Offer!CS研究生心态崩了,亲历20年最猛裁员潮
  • 视频模型假装在推理?MME-CoF新基准评估12个推理维度
  • Ilya、小扎之后,苏莱曼的「超级智能」进入7年倒计时!
  • IROS 2025 | 北理工提出BoRe-Depth:仅8.7M参数,在嵌入式设备实现50.7 FPS高清深度估计
  • TCSVT 25 | 宁波诺丁汉大学等提出De-LightSAM:仅需SAM-H 2%参数,实现通用化医疗影像自动分割
  • 有些答案,听 AI 说一百遍,不如和「最有料的人」聊一次
  • 上交大刘鹏飞团队:Context Engineering进入2.0,上下文成为可操作对象
  • 工程&计算机领域前沿洞察 | Synthesis技术前沿报告合集
  • 用 AI 做电商真实效果如何?我们调研了双 11 一线从业者
  • 马斯克 1 万亿美元的薪酬方案获特斯拉股东批准;东方甄选孙东旭离职;Altman:今年 OpenAI 年化收入将达 200 亿美元

谷歌DeepMind最新论文,刚刚登上了Nature!揭秘IMO最强数学模型



  新智元报道  

编辑:艾伦
【新智元导读】DeepMind的AlphaProof在IMO拿到接近金牌的银牌成绩。它结合大模型直觉、强化学习和Lean形式化证明,攻克多道高难题。它虽在速度、泛化和读题上仍有限,但已开启人类数学家与AI协作的新阶段。

每年夏天,来自全球的青年数学天才汇聚一堂,参加被誉为「数学世界杯」的国际数学奥林匹克竞赛(IMO)。

比赛6道题分两天完成,每题满分7分,总分42分,难度极高,往往只有不到1%的参赛者能全对所有题目。

横轴为分数(7分满),纵轴为人数

近年来,IMO也被视为AI领域的终极挑战之一,是测试AI高级数学推理能力的理想舞台。

2024年,谷歌DeepMind团队让一位特殊的「选手」参与了IMO角逐——一个名为AlphaProof的AI系统。

它取得了28分的高分,仅以1分之差无缘金牌,达到了银牌水平。

这是有史以来AI系统首次在IMO这样的顶级赛事中获得相当于奖牌的成绩,标志着机器在数学难题上的攻关能力迈上新台阶。

AlphaProof:数学解题AI高手登场

AlphaProof是DeepMind最新研发的「数学解题AI」系统,专门为证明复杂数学命题而设计。

简单来说,如果把数学题视作需要攻克的「迷宫」,AlphaProof就是一个自学成才的AI解题高手。

不同于我们常见的ChatGPT这类纯粹用自然语言「思考」的模型,AlphaProof走了一条独特的道路:它在计算机可验证的形式化语言中进行推理,从而确保每一步推导都严格正确,不会出现凭空捏造的「灵光一闪」却实则谬误的步骤。

AlphaProof使用了数学领域流行的形式化证明语言Lean来书写证明。

Lean语言示例

Lean的语法接近数学和编程语言的结合体,允许AI输出的每一步推理都被自动检查验证,避免了常规语言模型可能出现的谬误。

AlphaProof给出的答案不是靠人类评审的文字解释,而是一份计算机逐行检验通过的严谨证明。

这种将AI思维「硬化」成机械可核查形式的方式,让AlphaProof在解答再难的题目时也没有半点侥幸成分。

技术秘诀:大模型牵手强化学习

AlphaProof成功的核心秘诀在于将预训练大语言模型的「聪明直觉」和AlphaZero强化学习算法的「勤学苦练」巧妙结合。

语言模型擅长从海量数据中学习人类解题的经验和模式;

而强化学习则让AI通过不断尝试错误,不断改进策略,正如小孩反复练习最终学会骑自行车。

DeepMind团队先利用大模型为AlphaProof打下「学识」基础,然后让它在模拟的数学环境中反复练习,自己发现解题策略。

研究者首先收集了近一百万道数学题(涵盖不同领域和难度),利用谷歌最新的Gemini将这些自然语言描述的题目自动翻译成形式化的Lean代码表述。

这一过程相当于为AlphaProof打造了一个规模空前的题库——团队共获得了约8000万条形式化的数学命题,可以让AI来练习证明。

有了这个「题海」后,AlphaProof先经过监督学习微调,掌握基本的Lean语言证明技巧。

接着,它进入强化学习阶段:像AlphaGo下棋自我对弈一样,AlphaProof在Lean证明环境中与自己切磋。

每当AlphaProof找到一道题的正确证明并通过验证,就用这一成功案例来立即强化自身的模型参数,使它下次能更有效地解决更有难度的新问题。

这种边练边学的训练循环持续进行,AlphaProof在数以百万计的问题证明中不断进步,逐渐掌握高难度问题所需的关键技能。

AlphaProof在搜索证明的时候并非毫无头绪地「暴力穷举」。

它采用了类似于棋类AI中蒙特卡罗树搜索的策略,会智能地将复杂问题拆解成若干子目标各个击破,并灵活调整搜索方向。

在某些情况下,AlphaProof能在看似无限的可能推导中迈出恰到好处的一步,展现出仿佛人类数学家般的「灵光一闪」。

这既归功于大模型提供的直觉指导,也离不开强化学习反复探索带来的全面搜索能力——两者结合,使得AlphaProof比以往的任何AI系统都更善于在复杂的数学迷宫中找到出路。

奥赛夺银:AI解题里程碑

DeepMind的AlphaProof与AlphaGeometry 2联手在2024年IMO的6道竞赛题中解出了4道,获得了28分(满分42分),达到了银牌选手的成绩。

这一得分距离当年金牌线仅差一分(29分),几乎触及金牌门槛。

在解出的题目中,AlphaProof单独解决了其中3题(包括2道代数题和1道数论题),其中就包括了整场比赛最难的第6题——该题在600多名顶尖学生中也只有5人满分解决。

剩余的一道几何题则由专攻几何的AlphaGeometry 2模型完成,而两道组合数学题由于难以形式化和搜索爆炸等原因未能攻克。

最终,这套AI系统拿下4题满分(其余2题为0分),分数正好处于银牌段的顶端。

要知道,在人类选手中也只有不到10%的人能拿到金牌,今年共有58名选手得分不低于29分。

AlphaProof取得的银牌水平成绩,足以比肩一位受过多年训练的国际顶尖高中生天才选手。

这一成果令许多专家感到震撼:著名数学家、菲尔兹奖得主高尔斯评价说,AlphaProof给出的某些巧妙构造「远超出我以为AI目前能够做到的水平」。

AlphaProof在IMO上的表现具有里程碑意义。

这是AI首次在如此高难度的数学竞赛中达到人类奖牌选手的水准,表明AI的数学推理能力实现了重大飞跃。

过去,大模型即便掌握了海量教材和定理,也常常难以完整解决奥赛级别的挑战,更不用说给出严格证明。

而AlphaProof通过形式化证明和强化学习,真正让AI具备了解决开放性数学难题的实力。

它成功证明了IMO中最困难题目的事实也让人看到了希望:或许将来AI有潜力辅助人类攻克悬而未决的数学猜想。

局限与未来
AI数学家的进阶之路

尽管AlphaProof令人眼前一亮,但目前它仍有不少局限。

其一,解题效率是个问题。

人类选手必须在4.5小时内完成3题,而AlphaProof虽然最后找出了3题的解法,却耗费了将近3天时间。

这表明当前AI证明方法在搜索速度和计算资源上还有很大提升空间。

其二,AlphaProof并非万能,它未能解决的两道组合数学题恰恰反映了某些类型的问题对AI而言依然棘手。

这类题目往往涉及高度非结构化的创新思维,超出了AlphaProof主要从训练中「见过」的范畴。

因此,如何让AI拥有更强的通用性和适应性,去应对未曾遇见的新颖难题,是下一步的重要挑战。

其三,目前AlphaProof需要人工先将题目翻译成Lean的形式化表达,它自己并不理解自然语言问题。

这意味着它无法自主读题,也无法像人类数学家那样提出新的问题或判断哪些问题值得研究。

正如伦敦数学科学研究所的何杨辉所指出的,AlphaProof可以作为协助数学家证明的有力工具,但它还不能替代人类去发现和选择研究课题。

何杨辉

面对这些局限,DeepMind团队表示他们将继续探索多种途径来提升AI的数学推理能力。

未来的研发方向之一是让AI摆脱对人工翻译的依赖,直接阅读理解自然语言表述的数学题,并给出形式化证明。

同时,针对不同类别的数学问题(如组合数学或几何),可能需要引入更专业的策略,比如融合符号计算、知识库或分领域训练的模型,从而全面提高AI的解题覆盖面。

还有研究者设想,将来数学家可以与这样的AI证明助手协同工作:

AI快速验证人类猜想和小引理,甚至尝试大胆的思路攻克长期悬而未决的难题;

人类则专注于提出有意义的问题和整体证明构想。

可以预见,随着AlphaProof这类系统的不断完善,我们正迎来人机携手探寻数学前沿的新纪元。

AlphaProof展现出的形式化推理能力对AI安全和可靠性也有启发意义。

它输出的每一步推理都可追溯、验证,这种「严谨求证」的风格或许可用于改进未来的大模型,让它们在回答开放性问题时减少荒诞的臆测。

当AI变得越来越强大,我们更希望它是一个踏实严谨的「数学家」。

经过此次奥赛洗礼,AlphaProof让我们看到了AI在纯粹理性领域逼近人类顶尖水平的曙光。

当然,人类顶尖数学家的创造力和洞察力依然不可替代——至少在提出问题和宏观思路上,AI还有很长的路要走。

但毫无疑问,AI正在成为人类探索数学未知的一双有力之手。

无论人类或AI,攀登真理高峰的道路上,永远需要勇气、耐心与对未知的敬畏。

参考资料:
https://www.nature.com/articles/s41586-025-09833-y
https://www.julian.ac/blog/2025/11/13/alphaproof-paper/


<br>


    <a class="media_tool_meta meta_primary" href="http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&amp;mid=2652644849&amp;idx=1&amp;sn=3abd29d0186a4b32b62f89835f0c8d54&amp;chksm=f0f0d406834f3ef5303ee30bac7f1bda45e81765f1dee7f2adb224d7f88e834b5cc3e6b4f060&amp;scene=0#rd"  target="_blank">文章原文</a>
    <br>




<img alt="" class="" height="1px" src="https://images.weserv.nl/?url=http://www.jintiankansha.me/rss_static/83671/ELMu5kAFa5&amp;maxage=1y"  width="1px"></div></div></body></html>

联系我们